
Text2App: A Framework for Creating Android Apps from Text
Descriptions

Masum Hasan1*, Kazi Sajeed Mehrab1*, Wasi Uddin Ahmad2, and Rifat Shahriyar1

1Bangladesh University of Engineering and Technology (BUET)
2University of California, Los Angeles (UCLA)

1masum@ra.cse.buet.ac.bd, 1505025.ksh@ugrad.cse.buet.ac.bd, rifat@cse.buet.ac.bd
2wasiahmad@cs.ucla.edu

Abstract

We present Text2App – a framework that al-
lows users to create functional Android appli-
cations from natural language specifications.
The conventional method of source code gen-
eration tries to generate source code directly,
which is impractical for creating complex soft-
ware. We overcome this limitation by trans-
forming natural language into an abstract in-
termediate formal language representing an ap-
plication with a substantially smaller number
of tokens. The intermediate formal representa-
tion is then compiled into target source codes.
This abstraction of programming details al-
lows seq2seq networks to learn complex ap-
plication structures with less overhead. In or-
der to train sequence models, we introduce a
data synthesis method grounded in a human
survey. We demonstrate that Text2App gener-
alizes well to unseen combination of app com-
ponents and it is capable of handling noisy nat-
ural language instructions. We explore the pos-
sibility of creating applications from highly ab-
stract instructions by coupling our system with
GPT-3 – a large pretrained language model.
We perform an extensive human evaluation
and identify the capabilities and limitations
of our system. The source code, a ready-to-
run demo notebook, and a demo video are
publicly available at https://github.com/
text2app/Text2App.

1 Introduction

Mobile application developers often have to build
applications from natural language requirements
provided by their clients or managers. An auto-
mated tool to build functional applications from
such natural language descriptions will signifi-
cantly value this application development process.
For many years, researchers have been trying to
generate source code from natural language de-
scriptions (Yin and Neubig, 2017; Ling et al.,

* Equal contribution

Happy text to 

app 

Natural language description: 

Create an app with a textbox, a 

button named “Speak”, and a 

text2speech. When the button is 

clicked, speak the text in the text box. 

 

Simplified App Representation:  

 
<complist>  
  <textbox>  
  <button> STRING0 
</button> 
  <text2speech>  
</complist>  
 
<code>  
  <button1_clicked>  
    <speak>  
      <textbox1text>  
    </speak>  
  </button1_clicked>  
</code> 
 
Literal Dictionary: 

{ 
    “STRING0”: “Speak” 
} 

On click 

Figure 1: An example app created by our system that
speaks the textbox text on button press. The natural lan-
guage is machine translated to a simpler intermediate
formal language which is compiled into an app source
code. Literals are separated before machine translation.

2016), with the aspiration to automatically gen-
erate full-fledged software systems further down
the road. To date, however, the task of source code
generation has turned out to be highly difficult – the
best deep neural networks, consisting of hundreds
of millions of parameters and trained with hundreds
of gigabytes of data, fails to achieve an accuracy
higher than 20% (Ahmad et al., 2021; Lu et al.,
2021). Till date, the ambition to produce software
automatically from natural language descriptions
has remained a distant reality.

In this work, we present Text2App, a novel
pipeline to generate Android Mobile Applications
(app) from natural language (NL) descriptions. In-
stead of an end-to-end learning-based model, we
break down the challenging task of app develop-
ment into modular components and apply learning-

ar
X

iv
:2

10
4.

08
30

1v
2 

 [
cs

.C
L

] 
 7

 J
ul

 2
02

1

https://github.com/text2app/Text2App
https://github.com/text2app/Text2App


based methods only where necessary. We create a
formal language named Simplified App Represen-
tation (SAR), to represent an app with a minimal
number of tokens and train a sequence-to-sequence
neural network to generate this formal representa-
tion from an NL. Fig. 1 shows an example of a for-
mal representation created from a given NL. Using
a custom-made compiler, we convert the simpli-
fied formal representation to the application source
code from which a functional app can be built. We
create a data synthesis method and a BERT-based
NL augmentation method to synthesize realistic
NL-SAR parallel corpus.

We demonstrate that the compact app represen-
tation allows seq2seq models to generate app from
significantly noisy input, even being able to pre-
dict combinations it has not seen during training.
Moreover, we open source our implementation to
the community, and lay down the groundwork to
extend the features and functionalities of Text2App
beyond what we demonstrated in this paper.

2 Related Works

Historically, deep learning based program genera-
tion tended to focus on generating unit functions or
methods from natural language instructions using
sequence-to-sequence or sequence-to-tree architec-
tures (Ling et al., 2016; Yin and Neubig, 2017;
Brockschmidt et al., 2019; Parisotto et al., 2017;
Rabinovich et al., 2017; Ahmad et al., 2021; Lu
et al., 2021). The other type of works in program
generation that sparked researcher’s interest is gen-
erating GUI source code from a screenshot, hand-
drawn image, or text description of the GUI (Bel-
tramelli, 2018; Jain et al., 2019; Robinson, 2019;
Zhu et al., 2019; Moran et al., 2020; Kolthoff,
2019). These works are limited to generating GUI
design only, and does not naturally extend to func-
tionality based programming. To the best of our
knowledge, ours is the first work on developing
working software with interdependent functional
components from natural language description.

3 Text2App

Text2App is a framework that aims to build oper-
ational mobile applications from natural language
(NL) specifications. We make this possible by trans-
lating a specification to an intermediate, compact,
formal representation which is compiled into the
application source code in a later step. This inter-
mediate language helps our system represent an

application with a substantially smaller number of
tokens, allowing seq2seq models to generate intri-
cate apps in a few decoding steps, which otherwise
would be unsolvable by current sequential models.

We design a formal language named Simplified
App Representation (SAR) that captures the app
design, components, and functionalities in a small
number of tokens (Section 3.1). We further develop
a SAR compiler that converts a SAR to an appli-
cation source code (Section 3.2). Using MIT App
Inventor1 – a popular, accessible application devel-
opment tool – the source code can be compiled to
functional app in a matter of minutes. Training a
sequence-to-sequence neural network for translat-
ing a natural language to SAR requires a parallel
NL-SAR corpus. However, human annotation of
such a corpus is difficult, and it limits our capa-
bility to add new components and functionalities.
Instead, we conduct a human survey to understand
user perception of text-based app development and
app description pattern (Section 3.3), and based on
this survey, we create a data synthesis method to
automatically generate fluent natural language de-
scriptions of apps along with corresponding SARs
(Section 3.4). To make sure our synthetic dataset
is not monotonous, we introduce a BERT based
data augmentation method (Section 3.5). Using the
synthesized and augmented parallel NL-SAR data,
we train multiple sequence-to-sequence neural net-
works to predict SAR from a given text description
of an app, which is then compiled into functional
apps (Section 3.6). Fig. 2 describes each step in
our natural language to app generation process. We
also discuss how a pretrained language model, such
as GPT-3, can be used with our system as an exter-
nal knowledge-base for simplifying abstract human
instructions (Section 3.7). Our system is built to be
modular, where each module is self-contained: in-
dependent and with a single, well-defined purpose.
This allows us to modify one part of the system
without affecting the others and debug the system
to pinpoint any error.

Literals like strings, numbers are separated dur-
ing the preprocessing and are re-introduced during
compilation. Contrary to conventional program-
ming languages, unless a user specifies a detail of
an app component, a suitable default is assumed.
This allows the user to describe an app more natu-
rally and also reduces unnecessary overhead from
the sequential model.

1https://appinventor.mit.edu/

https://appinventor.mit.edu/


Natural Language
Description of App

Tokenized and
Pre-processed Seq2seq Neural Network

Simplified App
Representation (SAR)

SAR CompilerMIT App Inventor
Source (.scm, .bky)

MIT App Inventor
backend CompilerReady to Use!

Encoder Decoder
Create an app with a
textbox and a button

named "Speak". When 
...

create an app with a 
text box and a button
named STRING0 .

when ...

<complist> <textbox>
<button> STRING0

</button> </complist>
<code> ...

{ "STRING0": "Speak" }

.apk

{ "STRING0": "Speak" }

Figure 2: Text2App Prediction Pipeline. A given text is formatted and passed to a seq2seq network to be translated
into SAR. Using a SAR Compiler, it is converted to App Inventor project, which can be built into an application.

3.1 Simplified App Representation (SAR)
SAR is an abstract, intermediate, formal language
that represents a mobile application in our system.
We design SAR to be minimal and compact, at the
same time, to completely describe an application.
We formally define the Context Free Grammar of
SAR using the following production rules:

〈SAR〉 → 〈screens〉
〈screens〉 → 〈screen〉 ‘<NEXT>’ 〈screens〉 | 〈screen〉
〈screen〉 → 〈complist〉 〈code〉
〈complist〉 → ‘<COMPLIST>’ 〈comps〉 ‘</COMPLIST>’

〈comps〉 → 〈comps〉 〈comp〉 | 〈comp〉
〈comp〉 → ‘<COMP>’ 〈args〉 ‘</COMP>’ | ‘<COMP>’

〈code〉 → ‘<CODE>’ 〈events〉 ‘</CODE>’

〈events〉 → 〈event〉 〈events〉 | 〈event〉
〈event〉 → ‘<EVENT>’ 〈actions〉 ‘</EVENT>’

〈actions〉 → 〈actions〉 〈action〉 | 〈action〉
〈action〉 → ‘<ACTION>’ 〈args〉 ‘</ACTION>’

〈args〉 → 〈arg〉 〈args〉 | 〈arg〉
〈arg〉 → ‘<ARG>’ ‘<VAL>’ ‘<ARG>’ | ‘<VAL>’

Here, <SAR> is the starting symbol and the
tokens inside quotes are terminals. A mobile ap-
plication in our system firstly consists of screens.
Each screen contains an ordered list of visible (e.g.
video player, textbox) or invisible (e.g. accelerom-
eter, text2speech) components, which are identi-
fied with the <COMPLIST> tokens. Next, the
application logic is defined within the <CODE>
tokens. One functionality in our system is a tu-
ple containing an event, an action, and a value.
<EVENT> is an external or internal process that
triggers an action. <ACTION> is a process that
performs a certain operation. Both <EVENT> and
<ACTION> components often have properties that
determine their identity or behavior. For example,

an animated ball has properties ‘color’, ‘speed’,
‘radius’, etc. Such a property is called an argu-
ment (<ARG>). The values of such arguments are
indicated by <VAL>. As an example, Figure 1
shows the SAR of an app containing button and
text2speech. <button1 clicked> event triggers
the action <speak> from the text2speech compo-
nent, which uses <textbox1text> - the text in
textbox1 as a value.

3.2 Converting SAR to Mobile Apps

We convert SAR to MIT App Inventor (MIT AI)
project using a custom written compiler. The
project is then compiled into functioning app (.apk)
using MIT AI server. MIT AI is a popular tool for
app development large community of active devel-
opers, rich and growing functionalities. MIT AI
file structure mainly consists of a Scheme (.scm)
file consisting of components and their properties
and a Blockly (.bky) file consisting code functional-
ities. Appendix A shows an algorithm for our SAR
to source conversion process. Appendix B and C
respectively shows the .scm and .bky files for the
example shown in Fig. 1.

The SAR tokens have corresponding predefined
template source codes. The compiler parses the to-
kens and fetches their corresponding templates. By
fetching and modifying the predefined templates
with the user specified arguments, we generate the
.scm and .bky files from SAR. The files are then
compressed into an MIT AI project file (.aia). This
has to be uploaded to the publicly available MIT
AI server, after which the user can debug the app,
or download it as an executable (.apk) file.



button text2speech 

When the button is clicked ,  

textbox 

<button1_clicked> 

speak the text in the textbox 

<speak> <textbox1text>  </speak> </button1_clicked> 

<complist> <textbox> <button> 

<text2speech> </complist> 

Create an app with a textbox, a 

button and a text to speech 

Allowed components 

Action Event 

Sample 

Value Components SAR 

Code SAR 

NL 

Figure 3: Automatic synthesis of NL and SAR parallel corpus. Bold-italic indicates text is selected stochastically.

3.3 Survey on Natural Language based App
Development

In order to understand how a user would perceive
a system like Text2App, early in our study, we
performed a semi-structured human survey among
participants with some programming experience.
We asked them to describe several mobile apps
from a given set of app components. We received
a total of 57 responses2 from 30 participants. 36
out of the 57 responses contained enough details
for app creation. 19 responses were not detailed,
and would require more details and knowledge to
be converted to app (e.g. “make a photo editing
app” – requires the system to know what a photo
editor is). The observations from this survey helps
us to create a data synthesis method, and it works
as a general guideline for our study design.

3.4 Synthesising Natural Language and SAR
Parallel Data

Training a seq2seq model to generate SAR from
natural language would require an NL-SAR par-
allel corpus. Based on the findings of our survey
described in Section 3.3, we develop a data syn-
thesis method for generating natural language app
description and SAR data parallelly. First, from a
list of allowed components, we randomly select a
certain number of components. Most components
(i.e. button, textbox) are allowed to be re-
peated a certain number of times, but some compo-
nents (e.g. text2speech, accelerometer)
can only appear once. The selected components
are sorted into three groups, event component, ac-
tion component, and value component (detailed in
Section 3.1). For each event, action, and value com-
ponents, their functionalities are selected randomly

2http://bit.ly/AppDescriptions

Original: Create an app that has an audio player with
source string0, a switch. If the switch is flipped, play
player.

Augmentation: Create an app that has an external
player with source string0, a switch. If the switch gets
flipped, play player.

Table 1: BERT mask filling based data augmentation
method. Mutated words are highlighted green.

from a predefined list. When the components, ar-
guments, and their functionalities are selected, we
stochastically create a natural language description
by sampling natural language snippets from pre-
defined lists. Furthermore, we deterministically
create a SAR representation of an app and the func-
tionalities. Figure 3 demonstrates creation of a
simple app with three components. The random
selection process and repetition of components al-
lows our synthesis method to create wide variety
of apps.

3.5 BERT Based NL Augmentation

Data augmentation is common practice in com-
puter vision, where an image is rotated, cropped,
scaled, or corrupted, in order to increase the data
size and introducing variation to the dataset. To
add diversity to our synthetic dataset, we propose
a data augmentation method where we mask a cer-
tain percentage of words in our dataset using the
Masked Language Modeling (MLM) property of
pretrained BERT (Devlin et al., 2019) and sample
contextually correct alternate words. Table 1 shows
an example of the augmentation technique.

http://bit.ly/AppDescriptions


3.6 NL to SAR Translation using Seq2Seq
Networks

We generate 50,000 unique NL and SAR parallel
data using our data synthesis method, and mutate
1% of the natural language tokens. We split this
dataset into train-validation-test sets in 8:1:1 ratio
and train three different models.
Pointer Network: We train a Pointer Network
(See et al., 2017) consisting of a randomly ini-
tialized bidirectional LSTM encoder with hidden
layers of size 500 and 250.
Transformer with pretrained encoders: We
create two sequence-to-sequence Transformer
(Vaswani et al., 2017) networks each having 12
encoder layers and 6 decoder layers. Every layer
has 12 self-attention heads of size 64. The hidden
dimension is 768. The encoder of one of the models
is initialized with RoBERTa base (Liu et al., 2020)
pretrained weights, and the other one with Code-
BERT base (Feng et al., 2020) pretrained weights.

3.7 Simplifying Abstract Natural Language
Instructions using GPT-3

In our survey sessions (Section 3.3) we found that
some abstract instructions require external knowl-
edge to be converted to applications (e.g. “Create
a photo editor app” – expects knowledge how a
photo editor looks and works). Large pretrained au-
toregressive language models (LMs), have shown
to understand abstract natural language concepts
and even explain them in simple terms (Mayn,
2020). Using the few shot prediction capability
of GPT-3 (Brown et al., 2020), we experiment with
simplifying abstract app concepts. We find that
although this method is promising, the LM fails to
limit the prediction to our current capability (Table
3). The GPT-3 prompts are provided in Appendix
D.

4 Evaluation

Automatic Evaluation. We evaluate the three
seq2seq networks mentioned in Section 3.6 – Point-
erNetwork, seq2seq Transformer initialized with
RoBERTa, and seq2seq Transformer initialized
with CodeBERT. We evaluate the models in 3 differ-
ent settings – firstly, in a held out test set, secondly,
with increasing amount of mutation in the test set
(2%, 5% 10%) (Section 3.5). We also trained
separate models using data excluding specific
combinations of components (<button1clicked>,
<text2speech>) and then tested them on the ex-

cluded data. These establishes the models’ ability
to generalize beyond the patterns it was trained
on. From Table 2 we can see that augmenting the
training dataset notably improves all models (up to
22.04%). We also see that the RoBERTa initialized
model performs best in all evaluation categories.
Note that, all predictions reported in Table 2 are
valid SAR format.

Human Evaluation. To evaluate our system
with real world natural language, we conduct a
survey with 13 Computer Science undergraduate
volunteers. We provided the participants short
videos of 10 mobile applications, and asked them
to describe the application in their own language3.
We provided them with the component names and
one example NL. We collected total 112 responses
and generated the SAR from these responses us-
ing Text2App system. The evaluation contained
application SARs with different lengths (min 10,
max 42) Upon comparing the generated SAR with
the ground truth SAR data we found a BLEU-1
score of 54.99, and exact match 4/111. The labeled
data and predictions are made publicly available4.
Upon manual inspection, we found that 25 out of
the 112 predictions are either correct or function-
ally correct predictions of the user provided NL.
This represents the difficulty of our task and the
complexity of natural language. Observing the suc-
cessful and unsuccessful predictions, we find the
patterns emerge as shown in Table 4.

5 Scope, Limitation, and Future Work

Text2App is the first attempt of an NL based app
development tool, and our core contribution of our
project lies in the development endeavour of build-
ing the SAR, the SAR compiler, and the SAR-
NL parallel data synthesizer. Currently it sup-
ports app creation from 12 components (i.e. ‘cam-
era’, ‘textbox’, ‘button’, ‘text2speech’, ‘ball’, ‘ac-
celerometer’, ‘video player’, ‘switch’, ‘player’,

‘label’, ‘timepicker’, ‘passwordtextbox’), 4 events
(i.e. button click, switch flip, accelerometer shaken,
ball flung), and more than 10 actions (e.g. Take
a picture, Start/stop video/audio, Speak a given
text or a textbox, Bounce ball, set speed/color of
the ball, Set label, etc.). We have covered the first
3 out of 4 fundamentals of Android applications
(i.e. Activity, Services, Content Provider, Broad-
cast Receiver). Most components supported by in

3https://bit.ly/text2appsurvey
4https://bit.ly/text2appsurveyresponses

https://bit.ly/text2appsurvey
https://bit.ly/text2appsurveyresponses


#Epoch Test BERT Mutation Unseen Pair2% 5% 10%
BLEU EM BLEU EM BLEU EM BLEU EM BLEU EM

Without Training Data Augmentation

PointerNet 13.6 94.64 79.24 94.16 72.06 91.80 56.14 88.96 40.78 96.75 82.91
RoBERTa init 3 97.20 77.80 96.83 73.20 94.97 61.68 92.86 48.06 98.11 79.66
CodeBERT init 8 97.42 80.02 97.18 76.02 95.37 64.38 93.29 51.24 98.47 83.50

With Training Data Augmentation (1% Mutation)

PointerNet 23.2 95.03 81.40 94.85 79.46 93.85 72.04 92.53 63.68 96.68 83.33
RoBERTa init 3 97.66 81.76 97.60 80.66 96.91 76.16 96.04 70.10 98.64 84.68
CodeBERT init 7 97.64 81.66 97.51 80.20 96.74 74.98 95.71 67.58 98.62 84.51

Table 2: Comparison between Pointer Network and seq2seq Transformer with encoder initialized with RoBERTa
and CodeBERT pretrained weights. BLEU indicates BLEU-1 and Exact Match (EM) is shown in percent.

1. number adding app - make an app with a textbox, a
textbox, and a button named ”+”.
SAR: <complist> <textbox> <textbox> <button> +
</button> </complist>

2. twitter app - make an app with a textbox, a button
named “tweet”, and a label. When the button is pressed,
set the label to textbox text.
SAR: <complist> <textbox> <button> tweet
</button> <label> label1 </label> </complist>
<code> <button1clicked> <label1> <textboxtext1>
</label1> </button1clicked> </code>

3. browser app - create an app with a textbox, a button
named “go”, and a button named “back”. When the button
“go” is pressed, go to the url in the textbox. When the
button “back” is pressed, go back to the previous page.

4. Google front page - make an app with a textbox, a but-
ton named “google”, and a button named “search”. When
the button “google” is pressed, search google. When the
button “search” is pressed, search the web.

Table 3: Abstract instructions to simpler app descrip-
tion using GPT-3. Example 1, 2, was constrained
within our allowed set of functionalities. 3, 4, intro-
duced concepts that are not yet supported in Text2App
(marked in red and italic).

MIT App Inventor follows a similar tree-like pat-
tern, and thus can be represented as SAR. We are
inviting open source community to contribute to
and help grow this project. In future, we would
like to experiment with generative model based
data synthesis, more reliable language model based
NL simplification techniques, and potentially app
development in native languages.

6 Conclusion

In this paper, we explore creating functional mo-
bile applications from natural language text de-
scriptions using seq2seq networks. We propose
Text2App, a novel framework for natural language
to app translation with the help of a simpler inter-

Observation Example

Successful predictions
closely follow our data
format. (i.e. clear com-
ponent list followed by
functionality.)

NL: Create an app that has a
button named “Take Photo”,
when clicked open the rear
camera and capture an image.

Many predictions are
correct, but the human
label is wrong.

NL: Create an app that can
take a photo with the camera.
(Missing mention of a button.)

User expects the auto-
matic system to have
inherent understanding
of the real world.

NL: A typical registration
form with necessary text fields
and a submit button.

Model is biased to-
wards synthesizer key-
words.

NL: Create an app which
has a moving ball. (‘mov-
ing’ frequently appears with
accelerometer, model predicts
accelerometer component.)

System misses compo-
nents not specified.

NL: Create an app that has a
textbox labelled ”Insert Text”,
when the device is shaken,
speak the text in the textbox

Table 4: Observation from human labeled data predic-
tions

mediate representation of the application. The in-
termediate formal representation allows to describe
an app with significantly smaller number of tokens
than native app development languages. We also
design a data synthesis method guided by a human
survey, that automatically generates fluent natural
language app descriptions and their formal repre-
sentations. Our AI aware design approach for a
formal language can guide future programming lan-
guage and frameworks development, where further
source code generation works can benefit from.



Acknowledgement

We thank Prof. Zhijia Zhao from UCR for propos-
ing the problem that inspired this project idea.

We also thank OpenAI, Google Colaboratory,
Hugging Face, MIT App Inventor community, the
survey participants, and Prof. Anindya Iqbal for
feedback regarding modularity. This project was
funded under the ‘Innovation Fund’ by the ICT
Division, Government of the People’s Republic of
Bangladesh.

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi

Ray, and Kai-Wei Chang. 2021. Unified pre-training
for program understanding and generation. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics.

Tony Beltramelli. 2018. pix2code: Generating code
from a graphical user interface screenshot. In Pro-
ceedings of the ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems, pages 1–6.

Marc Brockschmidt, Miltiadis Allamanis, Alexander L.
Gaunt, and Oleksandr Polozov. 2019. Generative
code modeling with graphs. In International Con-
ference on Learning Representations.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-
Voss, Gretchen Krueger, Tom Henighan, Rewon
Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu,
Clemens Winter, Chris Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Advances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
BERT: A pre-trained model for programming and
natural languages. In Findings of the Association
for Computational Linguistics: EMNLP 2020, pages

1536–1547, Online. Association for Computational
Linguistics.

Vanita Jain, Piyush Agrawal, Subham Banga, Rishabh
Kapoor, and Shashwat Gulyani. 2019. Sketch2code:
Transformation of sketches to ui in real-time using
deep neural network.

K. Kolthoff. 2019. Automatic generation of g raphical
user interface prototypes from unrestricted natural
language requirements. In 2019 34th IEEE/ACM In-
ternational Conference on Automated Software En-
gineering (ASE), pages 1234–1237.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomáš Kočiský, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
599–609, Berlin, Germany. Association for Compu-
tational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2020.
Ro{bert}a: A robustly optimized {bert} pretraining
approach.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sun-
daresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. 2021. Codexglue: A machine learning bench-
mark dataset for code understanding and generation.
CoRR, abs/2102.04664.

Andrew Mayn. 2020. Openai api alchemy: Sum-
marization – @andrewmayne. https://
andrewmayneblog.wordpress.com/2020/06/
13/openai-api-alchemy-summarization/.
(Accessed on 03/22/2021).

K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett,
and D. Poshyvanyk. 2020. Machine learning-based
prototyping of graphical user interfaces for mobile
apps. IEEE Transactions on Software Engineering,
46(2):196–221.

Emilio Parisotto, Abdel rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. 2017. Neuro-symbolic program synthesis.
In Proceedings of the 5th International Conference
on Learning Representations (ICLR 2017), Toulon,
France.

Maxim Rabinovich, Mitchell Stern, and Dan Klein.
2017. Abstract syntax networks for code generation
and semantic parsing. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1139–
1149, Vancouver, Canada. Association for Computa-
tional Linguistics.

https://openreview.net/forum?id=Bke4KsA5FX
https://openreview.net/forum?id=Bke4KsA5FX
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
http://arxiv.org/abs/1910.08930
http://arxiv.org/abs/1910.08930
http://arxiv.org/abs/1910.08930
https://doi.org/10.1109/ASE.2019.00148
https://doi.org/10.1109/ASE.2019.00148
https://doi.org/10.1109/ASE.2019.00148
https://doi.org/10.18653/v1/P16-1057
https://doi.org/10.18653/v1/P16-1057
https://openreview.net/forum?id=SyxS0T4tvS
https://openreview.net/forum?id=SyxS0T4tvS
https://andrewmayneblog.wordpress.com/2020/06/13/openai-api-alchemy-summarization/
https://andrewmayneblog.wordpress.com/2020/06/13/openai-api-alchemy-summarization/
https://andrewmayneblog.wordpress.com/2020/06/13/openai-api-alchemy-summarization/
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1109/TSE.2018.2844788
https://arxiv.org/abs/1611.01855
https://doi.org/10.18653/v1/P17-1105
https://doi.org/10.18653/v1/P17-1105


Alex Robinson. 2019. Sketch2code: Generating a web-
site from a paper mockup.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083, Vancouver, Canada. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 440–450, Vancouver, Canada.
Association for Computational Linguistics.

Zhihao Zhu, Zhan Xue, and Zejian Yuan. 2019. Auto-
matic graphics program generation using attention-
based hierarchical decoder. In Computer Vision –
ACCV 2018, pages 181–196, Cham. Springer Inter-
national Publishing.

http://arxiv.org/abs/1905.13750
http://arxiv.org/abs/1905.13750
https://doi.org/10.18653/v1/P17-1099
https://doi.org/10.18653/v1/P17-1099
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/P17-1041
https://doi.org/10.18653/v1/P17-1041


Supplementary Material: Appendices

A SAR Compilation Algorithm

Algorithm 1: Compiling SAR to .scm, .bky

1 Input SAR tokens, LiteralDict
2 Output .scm, .bky
3 scm = initializeSCM() bky =

initializeBKY()
4 for token in complist do
5 if isComponentStart(token) then
6 uuid = generateNumUUID()
7 n = getCompNum(token)
8 if token.hasArgument() then
9 args = fetchArgs(token,

LiteralDict)
10 t = getTemplate(token)
11 t.set(n, uuid, args)

12 scm.add(t)

13 write(scm)
14 for token in code do
15 t = getTemplate(token)
16 uuid = generateStringUUID()
17 if token.isLiteral() then
18 val = LiteralDict[token]
19 if val.isFileDir() & fileDoesNotExist

then
20 val = closestMatchingFile()

21 t.set(val)

22 else
23 if token.hasNumber() then
24 number = regexMatch(token)
25 t.set(number)

26 t.set(uuid)
27 bky.add(t)

28 write(bky)

B Sceme (.scm) File for Visual
Components

#|
$JSON
{"authURL":["ai2.appinventor.mit.edu"],
"YaVersion":"208",
"Source":"Form",
"Properties":{"$Name":"Screen1","$Type":

"Form","$Version":"27",
"AppName":"speak_it","Title":"Screen1",

"Uuid":"0",
"$Components":[{"$Name":"TextBox1",

"$Type":"TextBox","$Version":"6",
"Hint":"Hint for
TextBox1","Uuid":"913409813"},{"$Name":
"Button1",
"$Type":"Button",
"$Version":"6","Text":"Speak","Uuid":
"955068562"},
{"$Name":"TextToSpeech1",
"$Type":"TextToSpeech","$Version":"5",
"Uuid":"1305598760"}]}}

|#

Listing 1: A sample scm file representing the visual
components of the app in Fig. 1. The blue portion lists
the components of the app.

C Blockly (.bky) Logical Components

<xml
xmlns="http://www.w3.org/1999/xhtml">

<block type="component event"
id="gnc7Dj5so‘[8HB}z|Ohk" x="-184"
y="91">

<mutation component type="Button"
is generic="false"
instance name="Button1"
event name="Click"></mutation>

<field name="COMPONENT SELECTOR">
Button1 </field>

<statement name="DO">
<block type="component method"

id="-7*:E7Xk@uO5?b32/Gq3">
<mutation

component type="TextToSpeech"
method name="Speak"
is generic="false"
instance name="TextToSpeech1">
</mutation>

<field name="COMPONENT SELECTOR">
TextToSpeech1 </field>

<value name="ARG0">
<block type="component set get"

id="wS:Fm{EYxQ]B1%*LO2zp">
<mutation

component type="TextBox"
set or get="get"
property name="Text"
is generic="false"
instance name="TextBox1">
</mutation>

<field
name="COMPONENT SELECTOR">
TextBox1 </field>

<field name="PROP">Text</field>
</block>

</value>
</block>

</statement>
</block>
<yacodeblocks ya-version="208"

language-version="33"></yacodeblocks>
</xml>

Listing 2: A sample bky file representing the logical
components of the app in Fig. 1. The colored lines
represent different blocks.



D GPT-3 Prompt

How to make an app with these components : button,
switch, textbox, accelerometer, audio player, video player,
text2speech
random video player app. – make an app with a video
player with a random video, a button named “play” and a
button named “pause”. When the first button is pressed,
start the video. When the second button is pressed pause
the video.
A time speaking app – an app with a button, a clock and a
text2speech. When the button is clicked, speak the time.
Display time app – create an app with a button, a
timepicker, and a label. When the button is pressed, set
the label to the time.
A messeging app – create an app with a with a textbox,
and a button named ”send”, and a label. When the button
is pressed, set label to textbox text.
Login form – create an app with a textbox, a passwordbox,
and a button named ”login”.
Search interface – make an application with a textbox, and
a button named “search”.
siren app – create an app with a music player with source
“siren sound.mp3”, and a button. When the button is
pressed, play the audio.
An arithmatic addition app gui – make an app with a
textbox, a textbox, and a button named “+”.
vibration alert app – create an app with an accelerometer,
and a text2speech. When the accelerometer is shaken,
speak “vibration detected”.
{A new prompt} –

Table 5: Prompt used to generate app description with
GPT-3. A new unseen prompt is added at the end and
the model is tasked to continue generating text in the
same pattern. This method is known as Few Shot text
generation (Brown et al., 2020).


