
Information and Software Technology 142 (2022) 106756

A
0

E
r
K
a

b

c

A

K
C
P
E
M
A

1

a
c
r
c
i
(
c
m

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

arly prediction for merged vs abandoned code changes in modern code
eviews
hairul Islam a, Toufique Ahmed b, Rifat Shahriyar a, Anindya Iqbal a, Gias Uddin c,∗

Bangladesh University of Engineering and Technology, Bangladesh
University of California, Davis, United States of America
University of Calgary, Canada

R T I C L E I N F O

eywords:
ode review
atch
arly prediction
erged
bandoned

A B S T R A C T

Context: The modern code review process is an integral part of the current software development practice.
Considerable effort is given here to inspect code changes, find defects, suggest an improvement, and address
the suggestions of the reviewers. In a code review process, several iterations usually take place where an
author submits code changes and a reviewer gives feedback until is happy to accept the change. In around
12% cases, the changes are abandoned, eventually wasting all the efforts.
Objective: In this research, our objective is to design a tool that can predict whether a code change would be
merged or abandoned at an early stage to reduce the waste of efforts of all stakeholders (e.g., program author,
reviewer, project management, etc.) involved. The real-world demand for such a tool was formally identified
by a study by Fan et al. (2018).
Method: We have mined 146,612 code changes from the code reviews of three large and popular open-source
software and trained and tested a suite of supervised machine learning classifiers, both shallow and deep
learning-based. We consider a total of 25 features in each code change during the training and testing of the
models. The features are divided into five dimensions: reviewer, author, project, text, and code.
Results: The best performing model named PredCR (Predicting Code Review), a LightGBM-based classifier
achieves around 85% AUC score on average and relatively improves the state-of-the-art (Fan et al., 2018) by
14%–23%. In our extensive empirical study involving PredCR on the 146,612 code changes from the three
software projects, we find that (1) The new features like reviewer dimensions that are introduced in PredCR
are the most informative. (2) Compared to the baseline, PredCR is more effective towards reducing bias against
new developers. (3) PredCR uses historical data in the code review repository and as such the performance of
PredCR improves as a software system evolves with new and more data.
Conclusion: PredCR can help save time and effort by helping developers/code reviewers to prioritize the code
changes that they are asked to review. Project management can use PredCR to determine how code changes
can be assigned to the code reviewers (e.g., select code changes that are more likely to be merged for review
before the changes that might be abandoned).
. Introduction

Code review is a practice where a developer submits his/her code to
peer (referred to as ‘reviewer’) to judge the eligibility of the written

ode to be included in the main project code-base. Code review helps
emove errors and issues at the early stage of development. As such,
ode review can reduce bugs very early and improve software quality
n a cost-effective way. A code review process has some distinct steps
see Fig. 1). The process starts when a developer introduces a code
hange by creating a patch or revision. The developer or the project
oderator assigns a reviewer to examine this change request [1]. The

∗ Corresponding author.
E-mail address: gias.uddin@ucalgary.ca (G. Uddin).

reviewer inspects the code, discusses any possible improvement, and
often suggests fixes. After the review, the developer may provide a new
patch or revision addressing the review comments and generate a new
review iteration. This process repeats until either the reviewer accepts
the changes and it gets merged to the project, or the reviewer rejects the
code changes and it gets abandoned [2]. Such a workflow is facilitated
by different automated code review tools such as Gerrit [3].

Substantial efforts are spent by code reviewers to review a patch
thoroughly, to make code changes, and to analyze comments/
suggestions made by the authors. If a change is abandoned after some
vailable online 23 October 2021
950-5849/© 2021 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2021.106756
eceived 26 April 2021; Received in revised form 17 September 2021; Accepted 12
 October 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:gias.uddin@ucalgary.ca
https://doi.org/10.1016/j.infsof.2021.106756
https://doi.org/10.1016/j.infsof.2021.106756
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106756&domain=pdf


Information and Software Technology 142 (2022) 106756K. Islam et al.
Fig. 1. Workflow of a modern code review process.

iterations, it causes significant waste of time and resources both for
the code reviewer and the code author. Indeed, we found that around
12% of code changes are abandoned in our mined data in three large
and popular open-source software projects (see Table 3 in Section 3).
Therefore, if we can predict early whether a code change would be
merged or abandoned in the long run, we can reduce the waste in
effort and time by both code reviewers and authors. The prediction
has to come as early as possible so that the reviewers can use it to
prioritize which code change to review next. On the other hand, the
management can analyze the cause of an ongoing review process with
negative predictions and intervene to save resources.

The real-world demand for a tool to early predict the future merge/
abandon chance of a code change was previously identified by a study
by Fan et al. [4]. They surveyed 59 developers from three popular open-
source software communities (Eclipse, LibreOffice, and GerritHub) and
asked them whether they needed a tool to predict early if a code change
will be merged or abandoned in the future. The developers agreed
that they need a tool to early predict whether a change would be
merged/abandoned in the future. Developers pointed out that this will
(1) help prioritize code changes to review, (2) increase their confidence
in merging the changes, and (3) reduce the resources wasted due to
abandoned changes.

A number of techniques and tools are developed in recent years to
assist code reviews with such early prediction. Jeong et al. [2] proposed
a model to predict patch acceptance in the Bugzilla system. Gousios
et al. [5] predicted pull request acceptance on GitHub. They calculated
features when the pull request has been closed or merged. The most
recent early prediction model is a shallow learning Random Forest
model developed by Fan et al. [4]. They compared their performance
with Jeong et al. [2] and Gousios et al. [5] and showed better results
at predicting merged changes.

Unfortunately, all the above approaches suffer from one or more of
the following shortcomings:

(1) Jeong et al. [2] used programming language-specific keywords
as features but did not use any historical data, which can of-
fer more contexts to predict the likelihood of future merged/
abandoned states.

(2) Gousios et al. [5] predict just before a pull request is merged/
abandoned, which might be too late to save efforts because a
code review can span over multiple iterations and interactions
between the code author and the code reviewer. Intuitively, the
sooner we can predict (in this cycle of iterations), the more
efforts and time we can hope to save for both stakeholders.

(3) Fan et al. [4] do not use any reviewer or project-related dimen-
sions, which can offer useful insights that are more specific to a
reviewer or a project.

(4) All the three models also suffer from bias against new authors,
i.e., pull requests from new authors could be unfairly predicted
as most likely to be abandoned due to lack of data.
2

Therefore, software developers and code reviewers can benefit from a
more robust tool that can more reliably predict whether a code change
would be merged or abandoned in the future.

In this paper, we have conducted an empirical study on the feasibil-
ity of developing a better classification model by addressing the above
limitations of prior works. Using Gerrit API, we have mined 146,612
code changes from the code reviews of three large and popular open-
source software projects (Eclipse, LibreOffice, and GerritHub). Each
code change has information of whether it is merged or abandoned
— this is our target variable. For each code change, we compute
25 features from five dimensions: reviewer, author, project, text, and
code. We then train and test five shallow machine learning models
and one deep neural network model on the dataset. We find that a
LightGBM-based model offers the best overall performance. We name
the model PredCR. In an empirical study involving PredCR, we answer
the following five research questions:

RQ1. Can our proposed early prediction model PredCR outper-
form the state-of-the-art baselines? This validates the contributions
of our work, compared to the prior works (Section 4.1). The most
recent model on the early prediction of merged code changes was
developed by Fan et al. [4]. Their model outperforms previous works
(Jeong et al. [2], Gousios et al. [5], etc.). We have compared our model
performance with the state-of-the-art by reproducing their work. We
found that PredCR relatively improves the AUC score by 14%–23%. The
normalized improvements [4,6] are 44%–54%. Therefore, our devel-
oped early prediction model PredCR offers considerable performance
improvement over state-of-the-art baseline (i.e., Fan et al. [4]).

RQ2. How effective is each feature dimension in our proposed
approach? This investigates how each feature dimension in PredCR
performs. We have found that (Section 4.2) on average the AUC scores
in models on the reviewer, author, project, text, and code dimen-
sions are 77%, 67%, 58%, 53%, and 57% respectively. So previous
experience-related features have much impact on the code change
outcome. Also, when dimensions are used all together the average AUC
score is around 85%. This validates that PredCR benefits from using all
the dimensions.

RQ3. How well does the model handle bias against new au-
thors? As we noted before, state-of-the-art tools to predict early merge/
abandoned changes suffer from bias against new authors. One of our
goals while designing PredCR was to reduce such bias so that we can
facilitate better onboarding of new reviewers and authors into the
software ecosystem. We have used historical data to predict merged
code changes whereas new authors have little prior records in the
system. We find (Section 4.3) that PredCR achieves on average 78.7%
AUC score for new authors. This relatively improves the AUC scores by
21%–30% compared to the state-of-the-art [4].

RQ4. How well does our approach work while using multiple
revisions? In real life, code changes generally go through multiple
revisions before finally getting merged or abandoned. Intuitively, it
is more difficult to predict the merge/abandoned change of a code
change if we are only looking at the first revision, compared to the
last revision. As such, it would be beneficial to find whether and how
PredCR can improve its prediction accuracy as we add more revisions to
it over time. This research question leads to exploring how well PredCR
performs when predictions are updated at each new revision of the
same code change. We find (Section 4.4) that if features related to prior
revisions are added to the feature set, 6%–15% relative improvements
are achieved in terms of the AUC score in the last revision compared
to the first. Therefore, PredCR achieves better performance during the
latter stages of a revision chain.

RQ5. How well does the model improve over time? As a software
project evolve, it can have more data to train over time. Therefore,
it is important to understand whether PredCR is able to improve its
prediction accuracy, as a project evolves. We thus sliced a project data
by time into 11 folds, where fold 0 contains the earliest data and fold 10
contains the most recent data. We find (Section 4.5) that PredCR gives



Information and Software Technology 142 (2022) 106756K. Islam et al.

S
t
e
q
m
s
o

5%–9% better AUC scores in the second half of the folds (i.e., folds
5–10) than the first half of the folds (i.e., folds 0–4). Therefore, the
performance of PredCR for an evolving software project improves over
time, as we have access to more data of the software.

Our tool can help reviewers manage their review works better. It can
also assist project management to make decisions regarding resource
allocation. Code changes with the possibility of being merged into the
main codebase can be given more focus than those predicted as aban-
doned. PredCR also extracts features to understand change intent: bug
fix, feature implementation or refactoring (Section 3.2.4). In practice,
bug fix changes have more importance than feature implementations
and feature implementations have more importance than refactoring.
So reviewers can use PredCR to label more important code changes
(e.g., bug fixes). Then prioritize changes that are more important and
have better merge probability.

Table 1 summarizes the contributions we have made in this work.
The usage scenarios of our proposed tool are as below:

• Without PredCR: Bob is a developer in a large project team. His re-
sponsibility is to review submitted code changes by other developers.
With the expansion of the projects, the number of code changes he
has to review has increased too. He inspects the code changes serially
by the order of submission time or randomly. However, it is difficult
for him to keep the focus on reviewing so many code changes. Also,
code changes with better quality are often taking much longer to
merge into the project for falling behind in the queue. Some of the
code changes are being abandoned even after his effort and time.
Also after giving some initial reviews in a code change, he has to
go through it again to check if the author has improved it in a later
revision.

• With PredCR: Bob and his team adopt our tool. The tool predicts the
probability of getting merged for the code changes that are assigned
to the reviewer. Now the code changes can be prioritized based on
the suggestion of the tool. So he can focus more on those with a
better chance of getting merged in the future. The tool features can
also be used to filter more important changes (e.g., bug fixes) and
prioritize only them. Also, there would be less delay for the better
code changes, as they will be reviewed and accepted earlier. As such,
Bob now can spend less time on code changes that will likely be
abandoned in the long run. Moreover, the tool updates the prediction
with each new revision/patch submission of the same code change.
This helps Bob refine his decision to prioritize code changes for
review, e.g., a code author may radically improve a new version of
a code that was previously predicted to be abandoned by PredCR.
With new data, PredCR can update its prediction that the updated
code has now more chance of getting merged than abandoned. This
will help Bob to then focus more effort on the new code changes
during reviews.

Our main objective is to help reviewers review code changes as-
signed to them. Therefore, our tool PredCR is expected to run after the
change has been assigned to him/her. This is based on our observation
of how reviews are conducted in platforms like Gerrit, where authors
add reviewers (both human and bot) while creating the code change.
We find that on rare occasions the reviewer list might get updated
later.1

Replication Package. https://github.com/khairulislam/Predict-Code-Changes.
Paper Organizations. The rest of the paper is organized as follows.

ection 2 presents the prior works related to ours. Section 3 presents
he data collection process, studied features, research questions, and
valuation metrics. Section 4 presents the answers to the research
uestions presented in the previous section. Section 5 discusses the
ajor themes of our study results and highlights the finding of our

tudy. Then in Section 6, we have presented the threats to the validity
f our work. And Section 7 has the concluding remarks.

1 https://git.eclipse.org/r/c/4diac/org.eclipse.4diac.ide/+/184346.
3

2. Related work

In this section, we have presented the prior works related to our
study. We have discussed their motivations, working setups, features
used, and limitations. Table 2 shows the summary of those works and
our comparison with them.

2.1. Early prediction in code reviews

Jeong et al. [2] focused on predicting patch acceptance at any state
of revisions. They suggested that patches predicted as accepted can be
auto-accepted and authors can use it before submitting a patch to get
feedback on it. Also, reviewers can use it to predict patch quality. Jiang
et al. [11] conducted a study on the Linux kernel and examined the rela-
tionship between patch characteristics and patch reviewing/integration
time. Kamei et al. [15] built a change risk model based on character-
istics of a software change to predict whether or not the change will
lead to a defect. However, this does not predict whether the change
will be eventually merged or abandoned. Gousios et al. [5] predicted
acceptance of pull requests. To obtain an understanding of pull request
usage and to analyze the factors that affect such development.

Hellendoorn et al. [12] used natural language processing techniques
to compute how similar a code change is to previous ones. They then
predicted whether it will be approved based on the review outcomes of
similar ones. Thongtanunam et al. [8] investigated the characteristics of
patches that: (i) do not attract reviewers, (ii) are not discussed, and (iii)
receive slow initial feedback. They calculated features just before the
code change was closed and predicted acceptance for it at that moment.
Gerede et al. [14] focused on predicting whether or not a code change
would be subject to a revision request by any of its reviewers.

Fan et al. [4] predicted whether a code change will be merged or
abandoned as soon as it was submitted. Their main objective was to
prioritize the code review process by early predicting code changes
that are more likely to be merged. They compared their works with
Jeong et al. [2], Gousios et al. [5], and show state-of-the-art perfor-
mance. Zhao et al. [9] proposed a learning-to-rank (LtR) approach to
recommending pull requests that can be quickly reviewed by reviewers.
Different from a binary model for predicting the decisions of pull
requests, their ranking approach complements the existing list of pull
requests based on their likelihood of being quickly merged or rejected.
Huang et al. [13] proposed a method to predict the time-cost in code
review before a submission is accepted. They focused on predicting
whether a submission will be accepted on the first submission and
whether it will take more than 10 submissions.

Our target is to predict the merged probability of a code change
request as soon as it is submitted before any review has come. This is
similar to the work by Fan et al. [4].

2.2. Review tool used

Jeong et al. [2] used the Bugzilla system in Firefox and the Mozilla
Core projects. Gousios et al. [5], Zhao et al. [9], Hellendoorn et al. [12]
worked with pull requests in GitHub projects. Jiang et al. [11] worked
on the Linux kernel which is supported by Git repositories. Thongta-
nunam et al. [8], Huang et al. [13], Gerede et al. [14], and Fan et al. [4]
worked on open source projects using the Gerrit tool. We have also
worked with the Gerrit tool.

2.3. Feature dimensions

Jeong et al. [2] used patch metadata, patch content, and bug report
related features. Bug report-related features are very specific to the
Bugzilla system they worked on. However, they do not use any histori-
cal data in the feature set. Shin et al. [16] showed that without histori-

cal data fault prediction models usually have low performance. Gousios

https://github.com/khairulislam/Predict-Code-Changes
https://git.eclipse.org/r/c/4diac/org.eclipse.4diac.ide/+/184346


Information and Software Technology 142 (2022) 106756K. Islam et al.
Table 1
Research contributions made in this work.
Topic Research contribution Research advancement

Prioritizing review requests Our work shows considerable
performance improvement
compared to the state-of-the-art
[4] in early predicting outcome
of code changes.

Predicting outcome of code
changes has been highlighted by
many prior studies [2] [7] [5]
[8] [4] [9]. Our study will help
to reduce the difficulties
programmers are facing in the
rapid growth of software projects.

Reducing prediction bias We have shown that PredCR can
reduce the prediction bias against
new authors is most cases
compared to the state-of-the-art
[4].

Code review approach for
newcomers is different [10]. So
careful approach is necessary so
that such a prediction model does
not discourage them from
contributing. Our study will help
the community by reducing this
bias.

Update prediction at multiple revisions We have presented an adjusted
approach that can update
prediction at the submission of
new revision for a code change
so that efforts at later revisions
are recognized.

Compared to prior arts which
calculates code change related
features only at initial submission
[4] or just before closing [11] [5]
[8], our approach adds the
flexibility to also consider
subsequent revisions. This is more
useful as it scores based on the
latest patch before any review
has started on it.
Table 2
Comparison of our paper with related works.

Topic Our works Prior study Comparison

Early Prediction in Code Reviews Our goal is to predict early
whether a code change will be
merged or abandoned to prioritize
reviews and to reduce waste of
efforts on abandoned changes.

Predict whether a patch will be
accepted [2,5,12], will need more
than one submission to be
accepted [13,14], will fail to
attract reviewers [8], will be
closed earlier than others [9].
Early prediction of a code change
being merged [4].

Our goal is to predict merge
probability early before any
review starts. Similar to Fan et al.
[4].

Review tool used Gerrit code review tool Bugzilla [2], Linux kernel [11],
Github [5,9,12], Gerrit [4,13,14]

As all features available on one
tool, might not be available on
another, our work on Gerrit
cannot be compared directly with
all of them.

Feature dimensions used Reviewer, author, project, text
and code related features.
Experience related features were
calculated using more recent data
(past 60 days).

Code or patch [2][11] [13] [5]
[4], bug report [2], project
[4,5,8], author [5] [4], review
[11] [8], text [8] [4], reviewer
[8]

We have focused on more recent
performance of authors and
reviewers. All features presented
by us in Section 3.2 are available
from the creation of the code
change.

Program language dependency We have not used any
language-dependent features

Jeong et al. [2], Hellendoorn et
al. [12], and Huang et al. [13]
used features dependent on Java
language.

PredCR can be used on any
project using the Gerrit tool as it
is language-independent.
et al. [5] used pull request, project, and developers’ characteristics-
related features. Both Jeong et al. [2] and Gousios et al. [5] used some
features (time after open) which are not available when the first patch
is submitted. Gousios et al. [5] also used review activities in previous
revisions in the feature set (num_comments, num_participants). They
calculated features at the time a pull request has been closed or merged.

Jiang et al. [11] grouped the features into six dimensions: expe-
rience, email, review, patch, commit, and development. The review
group is related to review participation in the prior patches. The email
feature contains information related to prior patches. Thus many of
the features are not available when submitting the first patch. Kamei
et al. [15] grouped the features into diffusion, size, purpose, history,
experience dimensions. Thongtanunam et al. [8] extracted patch met-
rics in five dimensions: patch properties, history, past involvement of
an author, past involvement of reviewers, and review environment.
Their history feature is related to review activities in prior patches
4

of the patch set. They calculated the features just before the code
change was merged or abandoned. Fan et al. [4] grouped the features
into five dimensions: code, file history, owner experience, collaboration
network, and text. All of these features are available when the first
revision of the code change request is being submitted.

We have grouped our features into five dimensions: reviewer, au-
thor, project text, code. All of those features are calculated after the
first revision is created.

2.4. Programming language dependency

Jeong et al. [2] used Java language-specific keywords in their
feature set to predict patch acceptance. Hellendoorn et al. [12] trained
and tested their language models on pull requests that only contain java
files. Huang et al. [13] used code modifying features and code coupling
features which are java language-dependent. Therefore, they filtered



Information and Software Technology 142 (2022) 106756K. Islam et al.
Table 3
Statistics of collected data.

Project Time period Changes Merged Abandoned

LibreOffice 2012.03.06 – 2018.11.29 56,241 51,410(91%) 4,831(9%)
Eclipse 2012.01.01 – 2016.12.31 57,351 48,551(85%) 8,800(15%)
GerritHub 2016.01.03 – 2018.11.29 33,020 29,367(89%) 3,653(11%)

Total 146,612 129,328(88%) 17,284(12%)

out any changes from their dataset which contained any non-java file.
These works are programming language-dependent, so cannot be used
for projects of different languages. Other previous works discussed [4,
5,8,11], do not have a programming-language dependency.

Our work does not use any language-specific features. So it is
programming language-independent.

3. Empirical study setup

In this section, we have described how we have collected the
data from Gerrit projects and preprocessed them before using them
in the experiment. Then we have explained the features extracted
from the dataset, which we have grouped into five dimensions. We
have presented the rationale and explained how the features were
calculated. Then, we have described our evaluation metrics to measure
the prediction performance. Finally, we have presented the research
questions we shall answer in our work.

3.1. Data collection and preprocessing

We have used the REST API provided by Gerrit systems to collect
data from three Gerrit projects LibreOffice, Eclipse, and GerritHub.
The miner was created following the approach presented by Yang
et al. [17]. We have collected changes with the status ‘‘merged’’ or
‘‘abandoned’’. We have mined a total of 61062, 113427, and 61989
raw code changes respectively from LibreOffice, Eclipse, and GerritHub
respectively within the time period mentioned in Section 3.1.

To filter out the inactive/dead sub-projects, we have selected sub-
projects with at least 200 merged code changes. Hence, 4, 64, and
48 sub-projects were left respectively from LibreOffice, Eclipse, and
GerritHub. We have removed code changes where subjects contain
the word ‘‘NOT MERGE’’ or ‘‘IGNORE’’ since these will eventually be
abandoned. We have also removed changes where the reviewers are the
same as the owners. Some changes did not have patchset data available
anymore, we have also excluded them. The same preprocessing steps
are applied to all three projects. Table 3 presents statistics of the finally
collected dataset. We have also collected registration dates for each
developer account. It was later used during feature extraction for the
computing experience of the developer. In case of missing values on the
date of registration, we have filled them by linearly interpolating them
based on the existing dates and account_id. For example, if account_id
3 has registration date missing and the closest previous and next
account_ids are 1 and 5 with registration dates 01-01-2018 and 01-05-
2018 respectively, then account_id 3 will be assigned 01-03-2018 as the
registration date.

3.2. Studied features

We have extracted a total of 25 features from the dataset. All fea-
tures are calculated when the code change is initially submitted (same
as Fan et al. [4]). Gousios et al. [5], Jiang et al. [11], Thongtanunam
et al. [8] calculated all features at the time when a change has been
closed. However, the review process has already been finished by then
and no remedy is effective at that point. Our main goal is to predict
the possibility of merging/abandonment for code changes as early as
possible. For this reason, we have not used the following dimensions:
history (Thongtanunam et al. [8]), review (Jiang et al. [11]), commit
5

(Jiang et al. [11]). These are not available at the initial stage. Also,
in Section 4.4 we have shown that by only adding revision numbers
to the feature list, PredCR can give significant performance when the
prediction is updated after submission of each new revision.

Some features were not available in the Gerrit system. For example:
bug report information (Jeong et al. [2]), email (Jiang et al. [11]).
When calculating past record-related features, we have generally con-
sidered recent performances (in the last 7 or 60 days). Fan et al. [4]
added ‘recent’ prefix to features that were calculated in the last 120
days. Our approach thus is more restrictive in terms of feature history.
Table 4 shows our finally selected feature list and the rationale behind
choosing those. We discuss the features and dimensions below.

3.2.1. Feature dimension 1. Reviewer
Num_of_reviewers is the number of human reviewers found in the

reviewer list of the code change. This feature was previously used by
Thongtanunam et al. [8] and Jiang et al. [11]. Num_of_bot_reviewers
are the number of bot tools added to the reviewer’s list. As these
accounts do not actively participate in review discussion but perform
different analyses on the patch set, we have kept their number sepa-
rately. Whether an account is a bot, is determined by checking whether
the account name is ‘do not use’ or it contains any of the following
words ‘bot’, ‘chatbot’, ‘ci’, ‘jenkins’, or the project name. We have
calculated a reviewer’s experience by the number of years s/he is
registered in this system. We have calculated that using the difference
of the revision upload date and the reviewer’s date of registration in this
project. This value is then averaged by the number of reviewers, which
is feature avg_reviewer_experience. A reviewer’s review count is found
by calculating the number of closed (merged or abandoned) changes, in
the last 60 days, where that a particular reviewer was involved in the
reviewer list. This value is then averaged by the number of reviewers,
which is feature avg_reviewer_review_count. Thongtanunam et al. [8]
introduced similar features that calculated prior patches that a reviewer
has reviewed or authored.

3.2.2. Feature dimension 2. Author
We have used the recent changes in a 60-day window when calculat-

ing author_merge_ratio, author_review_number, author_merge_ratio_in_
project, changes_per_week. When calculating the merge ratio, if there
are no finished changes of this author, then a default merge ratio of
0.5 is given. Author_merge_ratio is the ratio of merged changes among
all finished changes created by this author. Author_review_number is
the number of changes where the author is in the reviewers’ list.
Author_merge_ratio_in_project is the author’s merge ratio in the corre-
sponding sub-project. This sub-project name comes with the ‘‘project’’
key in code change response, so we have kept it in this way. Changes_
per_week is the number of closed changes each week for this author
in the last 60 days. Author_experience is calculated following the same
way as the reviewer experience, i.e., taking the difference between the
current revision upload date and the author’s date of registration in
years. Total_change_number is the number of changes created by this
author.

3.2.3. Feature dimension 3. Project
We have calculated all project-related features in a 60 days window.
Project_changes_per_week feature is calculated using the number of

changes closed every 7 days among the past 60 days for this sub-
project. Changes_per_author is the number of closed changes per author
in the last 60 days. Project_merge_ratio is the ratio of merged and closed
changes in the last 60 days for this sub-project. If the project does not
have any finished changes yet, the default merge ratio of 0.5 is given.



Information and Software Technology 142 (2022) 106756K. Islam et al.

n
a
f
a
u

3

f
m
f
e
T

3

Table 4
List of features. The dimensions which we have used, but were not used by state-of-the-art [4] are highlighted as bold. The features for which
we did not find prior studies using them, are highlighted as bold too.
Dimension Rationale Feature Name

Reviewer Reviewers number and their past record affect change outcome [18] [8].
avg_reviewer_experience
avg_reviewer_review_count [8] [19]
num_of_reviewers [8] [11]
num_of_bot_reviewers

Author

Experienced programmer has low defect
probability [20]. Developer’s experience
significantly impacts on change outcome
[11] [5]. More active developers have a
better chance at merging patches [21].

author_merge_ratio [4]
author_experience
author_merge_ratio_in_project [4]
total_change_number [4] [19]
author_review_number [4] [11]
author_changes_per_week [8]

Project Large workload results in less review participation [19]. project_changes_per_week [8]
changes_per_author

Project’s receptiveness affects change outcome [5] project_merge_ratio

Text

Well explained descriptions better draw attention [18] description_length [4]

Intent of a code change is related to the kind of feedback it receives.[22]
is_bug_fixing [4,8,15]
is_feature [4,8]
is_documentation [4,8]

Code

Modifying more directories is usually defect-prone [20]. modified_directories [8]
Scattered changes are more prone to defects [23]. modify_entropy [15]

Larger changes are more defect-prone [24]. lines_added [2] [4]
lines_deleted [2] [4]

Touching many files is more defect-prone [25] [24].

files_modified [5]
files_added [4]
files_deleted [4]
subsystem_num [4]
a
t
t
c
m
t

p
r
a
s
w
𝐾
p

c
c
u
t
u
a
p

c

𝐸

3.2.4. Feature dimension 4. Text
These features are calculated on the change description provided

for the code change. The aim is to identify the purpose of the code
change. The description is provided in the subject of the code change
when it is created. Description_length is the number of words present
in the change description. The other three features have binary values,
i.e., 0 or 1. We have marked a code change as documentation if the
change description contains ‘‘doc’’, ‘‘copyright’’, or ‘‘license’’. Similarly,
we categorize it as bug fixing if the change description contains ‘‘bug’’,
‘‘fix’’ or ‘‘defect’’. Other changes are marked as a feature. These are
done following Thongtanunam et al. [8].

3.2.5. Feature dimension 5. Code
This section refers to the features which are related to the changes

made in The source code. Modified_directories refer to the number of
directories modified by this code change. It is calculated by extracting
the bottom directories from file paths. Similarly, subsystem_num is the
number of subsystems (the top directory in the file path) modified in
the change. Modify_entropy is a feature previously proposed by Kamei
et al. [15]. Entropy is defined as −

∑𝑛
𝑘=1(𝑝𝑘 ∗ 𝑙𝑜𝑔2𝑝𝑘), where 𝑛 is the

umber of the files modified and 𝑝𝑘 is the proportion of lines modified
mong total modified lines in this change. Other features such as
iles_added, files_deleted, files_modified, and lines_added, lines_deleted
re self-explanatory. Most of these source code features have also been
sed in prior studies [4,5,8,15].

.3. Performance metrics

We use a total of seven metrics to report and compare the per-
ormance of PredCR against the baselines in our three datasets. The
etrics can be broadly divided into two categories: Standard Per-

ormance Metrics and Improvement Analysis Metrics. All the metrics
xcept one (cost-effectiveness) are used from Python scikit-learnlibrary.
he metrics are defined below.

.3.1. Standard performance metrics
We report five standard performance metrics:
6

(1) AUC,
(2) Cost-Effectiveness,
(3) Precision,
(4) Recall, and
(5) F1-score.

AUC. Area Under the Curve (AUC) of the Receiver Operating Char-
cteristic (ROC) is a widely used performance measure for predic-
ion models. For our case, the AUC score calculates the probability
hat PredCR prioritizes merged code changes more than abandoned
ode changes. Following related literature on the early prediction of
erged/abandoned code reviews, we use the AUC score to determine

he best-performing models.
Cost-Effectiveness (ER@K%). Cost-effectiveness is used to measure

erformance given a cost limit. As in practice, developers can only
eview a limited number of changes, our target is to correctly predict
s many merged cases as possible within that limit. Following prior
tudies [1,4], we have used EffectivenessRatio@K% (ER@K% in short),
hich evaluates the percentage of merged code changes in the top
% code changes(sorted by decreasing order of merge probability)
redicted as ‘‘Merged’’.

This also helps evaluate how well our model can prioritize the code
hanges. A larger effectiveness ratio means the model better prioritizes
ode changes that will eventually be merged. The state-of-the-art [4]
sed this metric for the same purpose. Xia et al. [1] used this metric
o evaluate the prioritization of blocking bugs. Jiang et al. [7] also
sed this to evaluate the ranking of personalized defect prediction. The
uthors of these works used prediction probability from the model to
rioritize.

By denoting the number of merged changes and the number of
hanges in top 𝐾% as 𝑁𝑚𝑘 and 𝑁𝑘, respectively, we get,

𝑅@𝐾% =
𝑁𝑚𝑘
𝑁𝑘

(1)

We have used ER@20% as the default cost-effective metrics. In
Section 5.1.1, we have shown PredCR performance when 𝐾 is varied
from 10 to 90. Note that using 𝐾 at 100 does not have any significance.
Top 100% means all code changes are being chosen. In that case, the
proportion of merged changes and all changes is constant, irrespective
of the model.

https://scikit-learn.org/stable/index.html


Information and Software Technology 142 (2022) 106756K. Islam et al.

a
c

𝑃

c
c

𝑅

3

m
c
r
t
d
s
t

𝑅

Precision. The proportion of changes that are correctly labeled
mong all predicted examples of that class. For merged and abandoned
lasses, we presented this metric as P(M) and P(A).

(𝑀) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, 𝑃 (𝐴) = 𝑇𝑁
𝑇𝑁 + 𝐹𝑁

(2)

Recall. The proportion of changes that are correctly labeled among
hanges that actually belong to that class. For merged and abandoned
lasses, we presented this metric as R(M) and R(A).

(𝑀) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

,𝑅(𝐴) = 𝑇𝑁
𝑇𝑁 + 𝐹𝑃

(3)

In our context, precision implies the percentage of results that are
relevant. On the other hand, recall refers to the percentage of total
relevant results correctly classified by our algorithm.

F1-Score. The harmonic means of precision and recall. For merged
and abandoned classes we presented this metric as F1(M) and F1(A).

𝐹1(𝑀) =
2 ∗ 𝑃 (𝑀) ∗ 𝑅(𝑀)
𝑃 (𝑀) + 𝑅(𝑀)

(4)

𝐹1(𝐴) =
2 ∗ 𝑃 (𝐴) ∗ 𝑅(𝐴)
𝑃 (𝐴) + 𝑅(𝐴)

(5)

.3.2. Improvement analysis metrics
We report two metrics:

(1) Relative Improvement (RIMPR), and
(2) Normalized Improvement (NIMPR).

Relative Improvement (RIMPR). By relative improvement, we
ean the relative change between the two scores. Instead of simply

alculating the difference it is better because it considers the difference
elative to the old value. For example, improving a score from 20%
o 40% is only a 20% increase in score. But only calculating the
ifference misses the fact that the new score is double the previous
core. However, the improvement here is 100% which clearly shows
hat fact. Improvement is calculated as follows,

𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝑅𝐼𝑀𝑃𝑅) = 𝑛𝑒𝑤 𝑠𝑐𝑜𝑟𝑒 − 𝑜𝑙𝑑 𝑠𝑐𝑜𝑟𝑒
𝑜𝑙𝑑 𝑠𝑐𝑜𝑟𝑒

(6)

We report this metrics name as RIMPR throughout the rest of the paper.
Normalized Improvement (NIMPR). Normalized improvement is

a measure proposed by Costa et al. [6] to evaluate the improvement
between two methods in terms of an evaluation metric. The same
metrics have been used by Fan et al. [4] to highlight improvements over
baselines in prioritizing code changes for reviewers. It takes room for
improvement into consideration. For example: let us consider accuracy
is improved from 80% to 85% and F1_score is improved from 90% to
95%. In both cases, the improvement is 5%, but normalized improve-
ment is 25% and 50%, respectively. In the latter case, the room for
improvement was only 10%. Hence, a 5% improvement here has much
more impact. We have used the short form of this metric as NIMPR.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 (𝑁𝐼𝑀𝑃𝑅) = 𝑛𝑒𝑤 𝑠𝑐𝑜𝑟𝑒 − 𝑜𝑙𝑑 𝑠𝑐𝑜𝑟𝑒
1 − 𝑜𝑙𝑑 𝑠𝑐𝑜𝑟𝑒

(7)

3.4. Experimentation setup and approach

We have used the longitudinal cross-validation setup, previously
used by Fan et al. [4]. Previous works have used similar setups to
ensure only using past data to predict future events. Rakha et al. [26]
used a similar approach in retrieving duplicate issue reports. Ban-
gash et al. [27] used time-aware evaluation in cross-project defect
prediction.

For each project, the selected code changes are first sorted in
increasing order of creation time. Then they are divided into 11 non-
overlapping windows of equal size following Fan et al. [4]. Instead of
traditional ten-fold cross-validation, this approach is followed to ensure
that no future data is used during training.

In the first fold, the model is trained using window 1 and tested
7

on window 2. In the second fold, the model is trained using windows
1 and 2 and tested on window 3. Similarly, in the last fold(10), the
model is trained on windows 1–10 and tested on window 11. At each
stage, we have calculated the AUC, ER@20%, precision, recall, and
F1 scores for merged and abandoned code changes. Then we have
computed the average of the metrics across ten-folds for both merged
and abandoned code changes. Kaggle kernels were used to run all
experiments. They provide an Intel(R) Xeon(R) CPU with 16 Gigabytes
of Ram, 4 CPU cores, and a 2.20 GHz processor. We have used Python
as the programming language. Due to the stochastic nature of the
machine learning models, it is recommended to run a model multiple
times and take the average for final performance reporting. In our
case, for each model, each experimentation is rerun ten times and the
average result is reported to ensure stable model performance. This
means that for each model we did longitudinal 10-fold cross-validation
10-times and then took the average. During each of the runs, we did
hyperparameter tuning.

Model selection process. First, we have used StandardScaler to
fit and transform the features of each project. Then to find the best
model, we have used six machine learning classifiers GradientBoost-
ing [28], RandomForest [29], ExtraTrees [30], LogisticRegression,
LightGBM [31] and Deep Neural Network(DNN). Except for LightGBM
and DNN, all other classifiers are imported from the scikit-learn library.
The LightGBM classifier used is taken from lightgbm2 library. The DNN
model was created using the keras3 library.

Handling class imbalance. As this dataset is an imbalanced one,
we have considered class imbalance when training the models. We
have balanced the classification loss, by setting the classifier parameter
class_weight to ‘balanced’. This uses the values of the target column to
automatically adjust weights inversely proportional to class frequencies
in the input data. This way class imbalance is taken into consideration
when calculating loss. Hence, we have set class_weight = ‘balanced’ for
all of these classifiers. Except for GradientBoosting, which automati-
cally handles class imbalance by constructing successive training sets
based on incorrectly classified examples [28].

Randomness across different runs. To introduce randomness
across different runs, we set solver = ‘saga’ for LogisticRegression
(suggested by scikit-learn documentation). And subsample=0.9, sub-
sample_freq=1, random_state = numpy.random.randint(seed=2021) for
LightGBM (this will subsample 90% of the train data each time).
Otherwise, these two models produce the same results after each run,
and rerunning them ten times does not have a meaning. The DNN
model maintains random results because it initialized with random
weights. The other models had their random_state kept to default ‘None’
during model initialization. We also manually validated whether each
run is creating different results.

Deep Neural Network (DNN) Architecture. We have used the
deep neural network model to investigate whether neural networks
would outperform other machine learning classifiers. The network
architecture is shown in Fig. 2. It contained three dense layers. The
input dense layer contains 25 relu units, one for each feature. Then
we have added a dropout layer with a 10% dropout rate, this would
randomly drop 10% of the incoming values, which will help reduce
overfit on the training data. Then another dense layer with 16 relu
units. Then another dropout layer with a 10% dropout rate. The output
layer contains one sigmoid node to convert input values within 0 to
1. This is the merged probability predicted by the model. We have
used the ‘adam’ optimizer and ‘binary_crossentropy’ loss. The number
of epochs was set to 10 (increasing or decreasing epoch more reduced
test performance) during model training.

Parameter-tuning. We have used grid search to hyper-tune the
parameters for each model and presented their best performance. We
tuned n_estimators and max_depth for RandomForest and ExtraTrees

2 https://lightgbm.readthedocs.io/en/latest/index.html.
3 https://keras.io/.

https://lightgbm.readthedocs.io/en/latest/index.html
https://keras.io/


Information and Software Technology 142 (2022) 106756K. Islam et al.
Fig. 2. DNN model architecture.

classifier, n_estimators, and learning_rate for GradientBoosting and
LightGBM, max_iter for LogisticRegression. For the DNN, we have
experimented by varying the number of layers, dropout rate (0.10,
0.15, 0.20), optimizers (Adam, RMSProp, SGD, Adagrad), and the
number of nodes.

The best-performing one was chosen based on the AUC score, as it
is mentioned [4] as the most important evaluation metrics to prioritize
code changes for reviewers. The chosen model is then used to compare
our longitudinal cross-validation performance with the state-of-the-
art. The same classifier is later used to answer our other research
questions. The hyper-tuning results for the chosen model are discussed
in Section 5.1.3.

Reproducing state-of-the-art baseline. To compare our work with
the state-of-the-art [4], we have followed the steps presented in their
work and also publicly shared git repository4 to reproduce it. We
have preprocessed our dataset using the same steps as them. Then
calculated their features. However, we found a bug in their feature
calculations, which calculates the status of some code changes which
have not been closed yet. The bug found in author_feature.py - class
AuthorPersonalFeatures - def extract_features, separates code changes
by the creation date of the current code change(for which they are
calculating features). However, some of those code changes are merged
after the current change was created. When calculating merge ratios,
these changes were not excluded. Thus merge ratios now may contain
information about the future of those code changes, potentially leaking
the target label(merged or abandoned). We have fixed this issue by
excluding those open changes when calculating any kind of merge
ratio (merged_ratio, recent_merged_ratio, subsystem_merged_ratio). We
have shared both implementations (original and fixed) in our shared
repository.5

We have used a RandomForest classifier with class_weight=
’balanced’ as their model, it is equivalent to their usage of RandomFor-
est from the Weka tool with 𝛼 = 1 in cost ratio. We have hyper-tuned
their model and found the best results when n_estimators are 500 and
max_depth is 5. This hyper-tuned model is then used on their feature
set calculated from the same dataset as us, following the longitudinal
cross-validation setup. So our results are directly comparable.

4 https://github.com/YuanruiZJU/EarlyPredictionReview.
5 https://github.com/khairulislam/Predict-Code-Changes.
8

Table 5
Performance for different classifiers across the three projects.

Model AUC

LibreOffice Eclipse GerritHub

LightGBM 86.0 84.3 84.6
DNN 85.3 82.9 84.0
Random Forest 85.2 83.6 83.5
GradientBoosting (GBT) 85.4 82.8 82.7
ExtraTrees 85.6 83.3 83.6
Logistic Regression 81.2 77.0 79.3

4. Empirical study results

In this section, we answer five research questions:
RQ1. Can our proposed approach outperform the state-of-the-art?
RQ2. How effective is PredCR when only one feature dimension is

used?
RQ3. How well does the model handle bias against new authors?
RQ4. How well does our approach work while using multiple revi-

sions?
RQ5. How well does the model improve over time?
Answering RQ1 will show how PredCR performs compared to the

state-of-the-art works. It will also validate PredCR’s effectiveness in the
early prediction of merged code changes. RQ2 will highlight the perfor-
mance of each feature dimension used in PredCR. This research ques-
tion will also validate whether PredCR benefits from using all features
rather than using a subset of them. RQ3 will explore whether PredCR
has any bias against new authors. We have used author experience-
related features, so this may introduce bias against new authors. By
answering this research question we have explained how we have
handled it and what impact it had on the performance of PredCR. RQ4
is intended to explore if PredCR is able to improve its prediction ability
with subsequent revisions. And finally, RQ5 investigates if PredCR has
any advantage of using a longer period of time. With time, training
data can be enriched as new code changes are available in a project
and hence performance improvement is expected.

4.1. Can our proposed approach outperform the state-of-the-art? (RQ1)

4.1.1. Motivation
To validate the performance of PredCR, we plan to compare our

approach and performance with the state-of-the-art. The work of Fan
et al. [4] is considered state-of-the-art on the early prediction of merged
code changes. Their model outperforms the previous works (Jeong et al.
[2], Gousios et al. [5], etc.) with respect to most of the metrics. So
if PredCR is able to outperform their models in a similar setup, its
superiority and applicability will be established.

4.1.2. Approach
The approach described in Section 3.4 is used here to evaluate this

research question.

4.1.3. Results
Table 5 shows the results for selecting the best classifier. AUC is

chosen as it is suggested to be the best metric for this task [4]. The best
results for each project are in bold. We have found that LightGBM
has the best overall performance across the three projects. Which
is not surprising as LightGBM has previously shown better performance
than similar gradient boosting decision trees [31]. LightGBM showed
an AUC score of 86.0, 84.3, and 84.6 for the three projects LibreOf-
fice, Eclipse, and GerritHub, respectively. We, therefore, have picked
LightGBM as the underlying model in our PredCR tool and used it
throughout the remaining parts of the paper.

Table 6, shows the results of our best model and its comparison
with the state-of-the-art [4]. PredCR outperforms the state-of-the-art

https://github.com/YuanruiZJU/EarlyPredictionReview
https://github.com/khairulislam/Predict-Code-Changes


Information and Software Technology 142 (2022) 106756K. Islam et al.

p
r
a

(
t
p
A

t
f
e
a
p
w
s

Table 6
Longitudinal cross-validation test results with comparison.

Project Approach AUC ER@20% Merged Abandoned

F1(M) P(M) R(M) F1(A) P(A) R(A)

LibreOffice Ours 86.0 99.3 94.1 95.9 92.4 48.3 42.2 58.7
Fan et al [4] 70.2 96.3 86.7 91.1 82.8 31.7 26.4 42.2

Eclipse Ours 84.3 97.5 92.3 92.9 91.8 57.7 56.0 60.0
Fan et al [4] 69.7 93.9 81.6 89.2 75.6 36.1 29.2 50.0

GerritHub Ours 84.6 99.0 92.0 95.3 88.9 50.0 42.2 62.5
Fan et al [4] 74.4 98.2 82.9 93.9 74.8 33.4 24.1 59.0

Table 7
Improvements (RIMPR and NIMPR) of PredCR over the baseline (Fan et al. [4]).

Project Metric RIMPR NIMPR

LibreOffice

AUC 22.8 53.7

ER@20% 3.11 81.1
F1(M) 8.53 55.6
F1(A) 52.4 24.3

Eclipse

AUC 20.9 48.2
ER@20% 5.06 59.0
F1(M) 13.1 58.2
F1(A) 59.8 33.8

GerritHub

AUC 13.7 39.8
ER@20% 0.81 44.4
F1(M) 8.56 41.5
F1(A) 49.7 24.9

in all cases. Our average AUC is around 85%, where the state-
of-the-art is around 71.4%. We note that we find a slightly lower
erformance for Fan et al. [4] model compared to its performance as
eported in the Fan et al. paper. This can be due to dataset differences
nd adding a fix in their feature calculation.

As defined in Section 3.3, we calculate the relative improvement
RIMPR) and normalized improvement (NIMPR) [4,6] of PredCR over
he state-of-the-art baseline (i.e., Fan et al. [4]). We present the im-
rovement of PredCR over the baseline in Table 7 using four metrics
UC, ER@20%, F1(M), and F1(A). We find that

(1) PredCR improves the AUC scores by around 14%–23% compared
to state-of-the-art [4] and the normalized improvements are
around 46%–58%.

(2) The ER@20% in state-of-the-art was already around 96% on
average. However, PredCR still provides around 44%–81% nor-
malized improvement.

(3) In terms of f1_score for merged changes, PredCR provides around
9%–13% relative improvements and 42%–58% normalized im-
provements. Though the state-of-the-art [4] were already signif-
icant for merged code changes.

(4) For abandoned changes, PredCR improves f1_score by a large
margin. It gives around 50%–60% relative improvements and
24%–34% normalized improvements. Considering only 12% of
the code changes are abandoned, difficulties in accurately pre-
dicting the fate of abandoned code changes are significantly
higher.

Table 8 shows the importance of our studied features while running
he longitudinal cross-validation process. It was calculated using the
eature_importances_ attribute provided by the LightGBM classifier for
ach project during the longitudinal cross-validation process and aver-
ged over all runs. The importance of the top three features for each
roject is in bold. The review and project dimensions added in PredCR
ere not used by Fan et al. [4], but Table 8 shows that they have a

ignificant impact on prediction performance.
9

Table 8
List of features with importance in PredCR.

Dimension Feature Name Feature Importance

LibreOffice Eclipse GerritHub

Reviewer

avg_reviewer_experience 9.67 6.73 10.0
avg_reviewer_review_count [8] [19] 10.9 8.18 8.98
num_of_reviewers [8] [11] 3.64 4.94 7.73
num_of_bot_reviewers 2.84 0.60 1.11

Author

author_merge_ratio [4] 4.72 2.68 4.24
author_experience 9.25 8.07 8.30
author_merge_ratio_in_project [4] 1.71 3.77 1.53
total_change_number [4] [19] 7.23 8.40 7.21
author_review_number [4] [11] 7.61 8.55 7.87
author_changes_per_week [8] 4.91 5.39 7.02

Project
project_changes_per_week [8] 7.55 7.00 7.00
changes_per_author 5.43 6.28 4.94
project_merge_ratio 2.93 4.43 5.35

Text

description_length [4] 3.53 3.79 2.64
is_bug_fixing [8] [4] 0.30 0.33 0.17
is_feature [8] [4] 0.38 0.84 1.19
is_documentation [8] [4] 0.18 0.28 0.24

Code

modified_directories [8] 2.07 0.98 0.96
subsystem_num [15], 2.83 5.90 3.39
modify_entropy [15] 2.47 2.02 2.42
lines_added [2,4] 4.44 5.24 3.93
lines_deleted [2,4] 3.33 3.32 3.21
files_modified [5] 1.24 1.24 1.37
files_added [4,32] 0.48 0.80 0.72
files_deleted [4,32] 0.30 0.25 0.06

RQ1. Can our proposed approach PredCR outperform the
state-of-the-art baseline? Our PredCR tool is based on the
LightGBM model, which on average, outperforms the state-
of-the-art [4] by 19% in terms of AUC score. If we compare
the normalized improvement (NIMPR) metric, PredCR out-
performs the state-of-the-art [4] by 48% in terms of AUC
score. PredCR outperforms by 10% for merged and by 54%
for abandoned changes (in terms of F1-score). The most in-
formative two features in PredCR are avg_reviewer_experience
and avg_reviewer_review_count which belong to the Reviewer
dimension, none of which were used by Fan et al. [4].

4.2. How effective is PredCR when only one feature dimension is used?
(RQ2)

4.2.1. Motivation
We have described the features we have used in Section 3.2. In this

research question, we have investigated how much performance each
feature dimension used in PredCR achieves alone. This will also vali-
date whether PredCR benefits from using all those feature dimensions
or not.

4.2.2. Approach
We have used the same longitudinal ten-fold cross-validation on all

projects. We have worked first with all dimensions and later trained
and tested the classifier for one feature dimension only. Then reported
the performance metrics.

4.2.3. Results
Table 9 shows PredCR performance using all feature dimensions

and single feature dimension. The best results for each dimension
are in bold. The average AUC on models trained on all dimensions,
reviewer, author, project, text, and code dimensions are 85%, 77%,
67%, 58%, 53%, 57%. In terms of the AUC score, PredCR on average

improves reviewer, author, project, text, and code models by 10%,



Information and Software Technology 142 (2022) 106756K. Islam et al.
Table 9
Performance of PredCR for all features and in each feature dimension.

Project Dimension AUC ER@20% F1(M) F1(A)

LibreOffice

All dimensions 86.0 99.3 94.1 48.1
Reviewer 81.3 97.9 92.2 42.9
Author 67.7 96.1 90.7 25.1
Project 50.8 91.2 76.8 11.5
Text 52.5 92.6 73.2 14.9
Code 53.7 92.6 81.0 14.5

Eclipse

All dimensions 84.3 97.5 92.3 57.7
Reviewer 75.9 93.3 91.5 54.2
Author 65.3 92.4 81.6 31.5
Project 58.1 90.0 78.5 25.5
Text 55.1 87.7 74.0 24.2
Code 55.9 88.4 76.1 24.6

GerritHub

All dimensions 84.6 99.0 91.7 49.3
Reviewer 72.7 95.3 86.8 35.1
Author 69.3 97.5 83.6 26.9
Project 66.4 96.8 77.7 26.2
Text 52.4 90.2 58.2 19.2
Code 61.2 95.8 74.8 22.5

27%, 46%, 60%, and 49% respectively. Except for the reviewer
dimension, all other dimensions have poor performance for abandoned
code changes.

We have presented two examples to demonstrate the importance of
the reviewer dimension and how it affects the change request outcome.
In project LibreOffice, for change id 65890,6 the author was facing
build failures because one of the pipeline tests was failing. The reviewer
mentioned that the test failed not because of the author’s change.
If he would have uploaded a new revision of this patch, the tests
might have run successfully. The author later abandoned this change
and created another change 662037 for the same issue. This was later
merged successfully with further help from the reviewer. Clearly, the
reviewer’s experience directly influenced the outcome of these changes.
In project GerritHub change id 745519,8 the reviewer suggested that
the change made by the author was unnecessary since there was a
better alternative. The experienced reviewer knew about this method,
but the author did not. After reviewer’s suggestion he abandoned the
change.

To demonstrate the importance of the author dimension, we show
an example from our dataset below. In LibreOffice change id 40719

the author gives a fix for several bugs. The reviewer compliments the
author for fixing this critical problem. The author is experienced in this
project and had been working for more than 1 year, with a 0.98 merge
ratio in this project. At the time of this code change, he was making
around 7 code changes per week and also actively reviewing other code
changes.

Similarly, here is an example of the project dimension. In LibreOf-
fice change id 4071, the code change is made for the ‘core’ sub-project.
At the time this code change was created, this sub-project had around
103 code changes per week, a merge ratio of 0.87, and on average 8
code changes per developer. The author was making around 7 code
changes per week, so he was a regular developer on that project. We
see his code changes get merged with minimal review.

And, the following example shows the importance of text dimen-
sion. In project GerritHub change id 745519,10 the change description
says, ‘‘add brctl command for neutron-linuxbridge image’’. The number
of words would be 6. And following the approach of Thongtanunam
et al. [8] this code change will be labeled as a feature.

6 https://gerrit.libreoffice.org/c/core/+/65890.
7 https://gerrit.libreoffice.org/c/core/+/66203.
8 https://review.opendev.org/#/c/745519/.
9 https://gerrit.libreoffice.org/c/core/+/4071.

10
10

https://review.opendev.org/#/c/745519/.
The next one demonstrates the importance of the source code-
related dimension. For example, LibreOffice change id 4071 is a
medium-size code change. The author made 71 line additions and 4
deletions across 6 files. So this is easier for the reviewers to inspect. We
see it gets merged with minimal review. These examples demonstrate
the importance of using PredCR with diverse features.

RQ2. How effective is PredCR when only one feature
dimension is used? The reviewer dimension has the best av-
erage AUC score of 77% across projects for a single dimension.
Also, this dimension has moderate performance on abandoned
code changes. Author dimension achieved 67% AUC score on
average. Project dimension achieved on average 58% AUC
score, but there is a significant difference in score between
LibreOffice and GerritHub. Text and code dimensions achieved
around 53% and 57% AUC scores, so their impact is close.
Using all dimensions together improved our AUC scores by
10%–60%. This validates that PredCR benefits from the use
of all features, compared to its subset.

4.3. How well does the model handle bias against new authors? (RQ3)

4.3.1. Motivation
Table 8 shows high importance of author-related features on PredCR.

For a new author, it is more likely to consider him/her as inexperienced
and predict a lower possibility for merging. For example, Fan et al. [4]
faced a considerable bias against new authors. Changes made by new
authors were mostly being predicted as abandoned. Hence, they had to
propose an adjustment approach. They predicted code changes made
by new authors using a model that is only trained on code changes
by new authors. They used another model trained on all code changes
for experienced contributors. We also need to evaluate how much bias
PredCR might have for the new authors.

4.3.2. Approach
We have labeled authors with less than ten code changes as new

authors following Fan et al. [4]. Test dataset in each fold of the
longitudinal ten-fold cross-validation only contains new authors. Fan
et al.’s [4] results were reproduced using their adjusted approach as
they suggested.

4.3.3. Results
Table 10 shows the comparison of PredCR performance with state-

of-the-art [4]. We find that PredCR’s average AUC score across all
projects is 85% and for new authors, it is 78.7%. So the performance
drop in PredCR for this case is small, considering new authors have
either none or few past records. In terms of AUC scores, PredCR im-
proves over Fan et al.’s [4] adjusted approach for LibreOffice, Eclipse,
and GerritHub projects by 26%, 31%, and 21%. The normalized im-
provements are 43%, 47%, and 40%. In terms of ER@20%, PredCR
provides 5%–17% relative improvements.

Table 10 also shows that for metrics related to merged code changes,
PredCR under-performs in terms of F(M) and R(M). This is because
PredCR has less bias against abandoned code changes. For metrics re-
lated to abandoned code changes, PredCR significantly outperforms in
terms of F(A) and R(A). But under-performs in terms of P(A). However,
this shows that Fan et al.’s [4] adjusted approach has a considerable
bias towards merged code changes.

We have concluded that in Fan et al.’s [4] original approach, the
bias to experienced authors was introduced by using many features
related to the author’s past records. For the new authors, these feature
values are mostly zero and thus cause a bias against them increasing
the likelihood of predicting them as abandoned. Even the adjusted ap-
proach ends up having a bias towards merged code changes. To reduce
such bias, we have decided not to use the collaborative dimension

https://gerrit.libreoffice.org/c/core/+/65890
https://gerrit.libreoffice.org/c/core/+/66203
https://review.opendev.org/#/c/745519/
https://gerrit.libreoffice.org/c/core/+/4071
https://review.opendev.org/#/c/745519/


Information and Software Technology 142 (2022) 106756K. Islam et al.
Table 10
Performance on changes created by new authors.

Project Approach AUC ER@20% Merged Abandoned

F1(M) P(M) R(M) F1(A) P(A) R(A)

LibreOffice Ours 78.3 94.4 52.9 92.3 41.6 49.6 37.1 85.2
Fan et al. [4] 62.1 83.2 85.3 76.0 97.2 13.9 49.7 8.31

Eclipse Ours 78.9 89.9 71.5 87.2 61.2 54.0 42.7 75.8
Fan et al.[4] 60.6 76.6 79.4 68.7 98.2 9.70 54.3 5.38

GerritHub Ours 78.9 91.1 64.6 89.8 51.9 49.3 36.5 78.9
Fan et al.[4] 65.0 86.9 84.9 75.6 97.1 11.3 41.6 6.81

which considers the collaborative history between author and review-
ers. This could have resulted in a decrease in overall performance.
However, our addition of features related to reviewer and project
dimensions makes up for that deficiency and also improves the overall
model performance.

RQ3. How well does the model handle bias against new
authors? PredCR achieved on average 78.7% AUC score in the
longitudinal cross-validation test for new authors, where the
state-of-the-art [4] achieved around 63%. PredCR gives a more
balanced prediction for both classes, while still maintaining
a better AUC score. Also, our model performance for new
authors (78.7% AUC) is not far behind the overall model
performance (85% AUC).

4.4. How well does our approach work while using multiple revisions?
(RQ4)

4.4.1. Motivation
So far we have trained and tested with only the initial submission

of code. But in real life, a code change generally goes through several
revisions before finally getting merged or abandoned. Each revision
contains updated files based on reviews received in the previous revi-
sions. Thus an outcome predicted based on the first revision might be
improper for later revisions. The prediction model needs to be able to
update prediction given a code change when a new revision is pushed.
Besides the initial submission, the stakeholders can still be significantly
benefited if a good prediction is available after early-stage revisions.

Many of the changes are not ready for review during the initial
submission. The reasons can be: (i) build failure, (ii) pipeline test
failure, (iii) work in progress, (iv) merge conflict, (v) unintentionally
included changes, and (vi) dependent on any other change. For this,
the author has to push more patches. Multiple patches are already
uploaded before the review even starts. A merge prediction made only
on the first patch would miss any of these cases. For example, in project
Eclipse, for change-id 167412,11 the initial patch was labeled work in
progress. The second patch faced a build fail. On the third patch, it
was labeled as ready-for-review and finally was merged after the eighth
patch. In project LibreOffice, for change-id 100373,12 it took the author
five patches to fix build fails. Only then the change was ready for review
and finally was merged at the sixth patch.

4.4.2. Approach
We have designed two adjusted approaches for the merge prediction

of a code change in revision rounds. In the first approach, we have
added only the review number to the existing feature set. This approach
does not train on any previous activities within the patchset. In the
second approach, we have added features related to reviews and other

11 https://git.eclipse.org/r/c/platform/eclipse.platform.swt/+/167412.
12 https://gerrit.libreoffice.org/c/core/+/100373.
11
Table 11
AUC(%) for multiple revisions with revision number (Approach 1).

Project Total First revision Last revision RIMPR NIMPR

LibreOffice 85.2 86.2 92.5 7.7 47
Eclipse 77.8 83.7 86.1 2.9 15
GerritHub 82.0 85.1 86.5 1.6 9.4

Table 12
AUC(%) for multiple revisions with previous revision related features (Approach 2).

Project Total First revision Last revision RIMPR NIMPR

LibreOffice 88.2 86.2 98.8 15 92
Eclipse 79.5 83.7 89.0 6.1 33
GerritHub 82.6 85.1 90.0 5.8 33

activities of previous revisions in the feature set. Similar approach was
followed by Gousios et al. [5], Jiang et al. [11] and Thongtanunam
et al. [8]. In both approaches, we have used the longitudinal data
setup during validation. Change features are sorted according to their
creation time.

We have used two different approaches because they will show
how PredCR performs with or without considering review activities
from previous revisions. One important difference is that for this
approach our features are calculated right after a new revision is
uploaded. So that we can give updated predictions on the code
change before reviewers have to do any review. Both Gousios
et al. [5] and Thongtanunam et al. [8] calculated features just before
the pull request or the code change is closed. However reviews are
already done at that point, so predicting at that point would not be
helpful for reviewers.

4.4.3. Results
Table 11 shows the test results with the first approach. Column

RIMPR and NIMPR show the improvement and normalized improve-
ment [4,6] in the AUC scores at the last revision compared to the first.
Here we have added ’revision_number’ in the feature set so that the
model knows at which stage of review this code change belongs. Jiang
et al. [11] used patch_no when predicting whether a patchset will be
accepted in the git repository of the Linux kernel. Note that this result
is not comparable with the one shown in Table 6 because the test set
is different. However, the average AUC is still significant.

‘Total’ presents results when the test fold contains all changes of
that fold. ’First revision’ presents the result when the test fold only
contains changes at their first revision. The last revision means when
the code change was finally merged or abandoned. ’Last revision’
presents the result when the test fold only contains changes at that
revision. Table 11 shows that in all cases the AUC score has improved
in the last revision. That is expected because the fate of the code change
is almost set at that time.

For the second approach we have used revision number [11],
weighted_approval_score, avg_delay_between_revisions [8], and num-
ber_of_messages as extra features. Weighted approval score is calculated
at each revision by adding label values of previous revisions multiply-
ing by the fraction of current_revision_no and current_revision_no + 1.
This will add more weight to the labels in the later revisions.

Avg_delay_between_revisions is calculated in days. Table 12 shows
the average test AUC scores achieved during the experiments. Column
RIMPR and NIMPR show the improvement and normalized improve-
ment [4,6] of the AUC scores at the last revision compared to the
first.

Overall AUC scores and AUC scores in the last revision both have
improved in this approach. During the first revision, these previous
revision-related features do not exist. However, this result shows that
adding previous revision-related features can improve prediction per-
formance in later revisions. Also, we have found that for changes with

only one revision the AUC scores are 86%, 85.2%, and 83.5% in project

https://git.eclipse.org/r/c/platform/eclipse.platform.swt/+/167412
https://gerrit.libreoffice.org/c/core/+/100373


Information and Software Technology 142 (2022) 106756K. Islam et al.
Table 13
AUC score in each fold.

Fold LibreOffice Eclipse GerritHub

1 82.6 76.6 86.4
2 80.7 82.1 72.9
3 81.0 81.2 80.6
4 80.3 86.9 79.7
5 87.0 86.1 87.5
6 87.5 88.6 84.8
7 88.2 84.3 85.5
8 89.6 85.6 89.6
9 90.9 87.1 88.4
10 91.8 84.9 91.1

LibreOffice, GerritHub, and Eclipse, respectively. However, for changes
with multiple revisions, their AUC scores at the last revision (when the
change was finally closed) are 98.6%, 89.4%, and 86%, respectively.
But since our primary goal is to give better results during the initial
submission, we have not focused too much on this point.

RQ4. How well does our approach work while using multi-
ple revisions? PredCR achieves around 78%–88% AUC score
when predictions are updated at the submission of each new
revision. PredCR can improve prediction at the last revision
up to 8%, compared to the prediction performance at the
first revision without using previous revision activity-related
features. Using previous revision activity-related features can
improve the performance up to 15%. So PredCR can be ad-
justed with significant results to update predictions at later
revision.

4.5. How well does the model improve over time? (RQ5)

4.5.1. Motivation
In real-life scenarios, the number of changes will keep increasing

over time. Hence, the model can be trained on a larger dataset. But
it is important to validate whether increasing the size of the training
dataset will increase the performance of PredCR.

4.5.2. Approach
We have followed a longitudinal ten-fold cross-validation setup

to calculate model performance in each project. As explained in the
approach of RQ1, this validation setup ensures no future data is used
during training. The code changes are sorted by their time of creation
and the model trained on past data is used to predict future code
changes. The performance of subsequent folds of validation presents
the outcome of the model over time. Therefore, we have used the
results achieved in each fold of the longitudinal cross-validation setup
performed in RQ1, to validate whether PredCR performance improves
in later folds.

4.5.3. Results
Table 13 shows the prediction performance of the model during

each fold by AUC score. The results show that the performance does
not monotonically increase over time. However, the performance in
the last half is better on average than that in the first half. In the last
fold, both LibreOffice and GerritHub achieved the best results. Eclipse
achieved the best AUC score in the 6th fold. Average AUC score for
LibreOffice, Eclipse, and GerritHub in fold 1–5 are respectively 82%,
82%, and 81.4%. And in fold 6–10 they are 89.2%, 86.0%, and 87.9%.
So AUC scores on average improved 9%, 5%, and 8% in the latter half
of the longitudinal cross-validations.
12
Table 14
ER@20% for different 𝐾.

K LibreOffice Eclipse GerritHub

Ours Fan et al [4] Ours Fan et al [4] Ours Fan et al [4]

10 99.5 97.3 97.9 95.2 99.4 98.2
20 99.2 96.3 97.5 93.9 99.0 98.2
30 98.9 95.1 96.8 93.1 98.6 97.3
40 98.6 94.4 96.4 92.4 98.0 96.3
50 98.1 93.7 95.8 91.4 97.3 95.8
60 97.8 92.8 95.2 90.5 96.8 94.7
70 97.4 92.0 94.4 89.4 96.2 93.8
80 96.6 90.0 93.3 88.1 95.5 92.5
90 95.7 89.7 91.8 85.9 94.3 91.2

RQ5. How well does the model improve over time? The
longitudinal cross-validation setup sorts data by time and after
each fold, one more window is added to the training data,
so train data size increases too. In this real-world scenario,
PredCR has improved 5%–9% in terms of AUC scores in the
latter half of the fold. This validates that, in an active project,
with the passage of time, PredCR will be able to improve its
performance as more changes are created.

5. Discussions

In this section, we first offer more detailed insights into the per-
formance of PredCR by analyzing the performance based on hyper-
parameters and run-time (Section 5.1). We then discuss the implications
of PredCR and our study findings to the field of software engineering
practitioners and research in Section 5.2.

5.1. A deeper dive into PredCR performance

In Section 5.1.1, we first analyze the effectiveness of PredCR based
on the presence of more/fewer code changes.

In Section 5.1.2, we report how much time PredCR takes to train. In
Section 5.1.3, we report how the performance of PredCR changes based
on different values of hyper-parameters. We have used the PredCR in
Section 4 after the hyper-parameter tuning. In Section 5.1.4 we discuss
our model results after excluding each dimension from the feature
set. Finally, Section 5.1.5 shows the efforts developers spent per code
changes in our dataset.

5.1.1. Effectiveness of PredCR with gradual increase in code changes
In this section, we will investigate the performance of PredCR with

an increased percentage of inspected code changes. Since reviewing
code changes is a costly and time-consuming task, it is not feasible
to inspect all the reviews. Like previous studies, we use 20 as the
default value for 𝐾 in ER@K%. To observe the performance of PredCR
with increased 𝐾, we increase the value from 10 to 90 and repeat the
experiment. Table 14 presents that PredCR outperforms Fan et al. [4]
for all the projects at every 𝐾 value. Though the ER is supposed to
decrease as 𝐾 increases (the number of abandoned changes increases
in the top 𝐾% of the list), still PredCR performs well.

5.1.2. Time efficiency
In this section, we discuss the time needed to train the model and

its prediction time. If the model takes too long to predict, then the
reviewers would not get the updated predictions in time, thus discour-
aging them from applying it. Moreover, new changes keep coming, and
it would be challenging to update the model if it takes too long. Our
used environment provides 16 Gigabytes of Ram, 4 CPU cores, and
a 2.20 GHz Intel Xeon CPU. In Table 15, we have presented model

training times in seconds. For LibreOffice, Eclipse, and GerritHub,



Information and Software Technology 142 (2022) 106756K. Islam et al.
Table 15
Model training time (seconds) in each fold.

Fold Libreoffice Eclipse GerritHub

Ours Fan’s Ours Fan’s Ours Fan’s

1 1.64 1.99 1.22 2.85 1.28 1.99
2 2.13 3.09 1.65 5.29 1.77 3.01
3 2.69 4.20 1.82 7.68 1.79 4.07
4 3.07 5.24 1.98 10.1 2.06 5.04
5 3.30 6.32 2.21 12.5 2.38 6.00
6 3.78 7.58 2.46 15.3 2.49 7.10
7 4.19 8.65 2.71 18.0 2.87 8.18
8 4.61 9.75 3.08 20.7 2.90 9.13
9 5.02 10.9 3.22 23.4 2.94 10.2
10 5.17 12.0 3.54 25.8 3.24 11.3
Average 3.56 6.97 2.39 14.2 2.37 6.60

Table 16
Hyper-tuning of PredCR.

Project n_estimators learning_rate AUC F1(M) F1(A)

LibreOffice

100 0.1 84.8 94.9 48.5
100 0.01 85.6 91.7 43.4
500 0.1 83.3 96.3 48.8
500 0.01 86.0 94.2 48.1

Eclipse

100 0.1 84.0 92.6 57.6
100 0.01 83.4 90.9 55.2
500 0.1 83.1 93.9 59.4
500 0.01 84.3 92.3 57.7

GerritHub

100 0.1 83.8 93.3 51.6
100 0.01 83.9 89.1 44.2
500 0.1 82.8 95.8 56.2
500 0.01 84.6 92.0 50.0

PredCR training across all 10 folds takes on average 3.56, 2.39, and
2.37 s. Where the state-of-the-art [4] takes on average 6.97, 14.2, and
6.60 s.

5.1.3. Impact of hyper tuning of PredCR
Hyper-tuning the parameters of the selected classifier is needed to

ensure best model performance during practical use [33]. We have
hyper-tuned the selected LightGBM classifier with varying the number
of estimators and learning rate. The results are shown in Table 16. The
best parameters are n_estimators = 500 and learning_rate = 0.01 based
on AUC score.

5.1.4. Impact of excluding each dimension
This section presents the importance of each feature dimension.

We exclude one feature at a time and rerun the experiment. From
Table 17 we can see that both the reviewer and author dimensions have
significant impacts on the model performance. However, removing the
author dimension still gives around 82% AUC score. So if potential bias
against new authors becomes a concern, removing this dimension will
not make the model unusable.

5.1.5. Developer effort spent for changes
In this section, we show how much effort the developers on average

spent on code changes. We consider its duration in days, the number of
messages, and the number of revisions as effort. Duration is measured
as the number of days spent from the creation of the code change
till it gets merged or abandoned. We found there were occasional
large values of these metrics and removing such outliers as noises is
a standard statistical process [34]. Following Tukey et al. [34], we
have removed values outside these two ranges: (a) Lower limit: first
quartile −1.5 * IQR (b) Upper limit: third quartile + 1.5 * IQR. Where
IQR (Inter Quartile Range) is calculated by subtracting the first quartile
from the third. After removing the outliers, we calculated the mean of
those values and presented them in Table 18. From Table 18 we see,
abandoned changes are generally taking more time to close, have fewer
13
Table 17
Performance of PredCR after excluding one feature dimension at a time.

Project Excluded dimension AUC ER@20% F1(M) F1(A)

LibreOffice

Reviewer 70.0 96.9 91.7 26.8
Author 82.4 98.4 93.5 45.7
Project 85.9 99.2 93.8 46.8
Text 85.9 99.2 94.0 47.9
Code 85.7 99.1 93.9 47.6

Eclipse

Reviewer 68.4 94.1 84.1 33.4
Author 81.1 96.4 92.9 56.4
Project 84.0 97.3 91.9 57.3
Text 84.1 97.5 92.2 57.3
Code 83.6 97.1 92.3 57.1

GerritHub

Reviewer 73.3 97.9 84.6 30.7
Author 82.8 98.5 91.3 47.8
Project 83.5 98.9 91.6 47.7
Text 84.4 98.9 91.8 49.4
Code 84.5 98.9 91.8 49.5

Table 18
Developer effort spent on the code changes.

Project Approach Duration in days Messages Revisions

LibreOffice
Total 0.90 5.81 2.28
Merged 0.89 5.87 2.36
Abandoned 0.98 5.21 1.42

Eclipse
Total 2.11 8.75 2.24
Merged 2.09 9.18 2.36
Abandoned 2.30 6.43 1.62

GerritHub
Total 1.60 9.16 2.00
Merged 1.57 9.37 2.04
Abandoned 1.90 7.50 1.68

Table 19
Performance of PredCR across projects.

Source Project Target Project AUC ER@20% F1(M) F1(A)

LibreOffice Eclipse 64.3 95.1 85.2 23.0
GerritHub 66.9 92.5 88.7 32.2

Eclipse LibreOffice 77.5 97.5 84.6 30.6
GerritHub 76.6 97.8 88.0 36.0

GerritHub LibreOffice 79.2 98.3 84.4 30.7
Eclipse 81.1 95.9 87.6 58.2

messages and revisions per change. These stats are consistent with the
results found by Wang et al. [35] who investigated in detail why code
changes get abandoned.

5.1.6. Cross project performance
For new projects, there might not be enough data to start giving

predictions. In those cases, models pre-trained on other projects might
be useful during the initial stage of the project. Here we have evaluated
PredCR performance in cross-project settings. We have trained the
model on a complete dataset of one project and tested it on a complete
dataset from another project.

From Table 19 we see that PredCR maintains around considerable
performance even across different projects. So PredCR pre-trained on
other projects can be effectively used for new projects. Notice that this
result is not comparable to the ones from Section 4 as it does not follow
longitudinal cross-validation.

5.2. Implications of findings

As described in Section 1, the basic usage scenario of our tool is
to provide early warnings to authors, reviewers, and the management
about review iterations that will eventually be abandoned. As such,
PredCR can be effective for the diverse major stakeholders in software

engineering:



Information and Software Technology 142 (2022) 106756K. Islam et al.

m
r
s
c
m
S
m
T

w
p
i
i
r
w
r
s
d
t
i

e
i
e
e
t
t
b
e

d
a
t
d
d
i
t
I
d
i
s
a
o

o
b
s
i
r

u
I
a
s
m

I

W
a
r
c
t
t
o
t
m
f
t
s
h
d
b
c
h
s

F
t
r
s
e
t
i
r
P
n
o
(
s
w
s
a
o
n
b
s

t
i
u
W
t
m
e
o

7

t
c
m
t

(1) Project Manager and leads to prioritize code review and code
change efforts based on the recommendation from PredCR,

(2) Software Developers to save time and efforts by focusing on
code changes that will most likely be merged (as predicted by
PredCR), and

(3) Software Engineering Researchers to further investigate useful
features like reviewer dimension in relevant early prediction
tools.

Project Manager. This tool can provide benefits to software project
anagement. If the management can predict the negative outcome of a

eview-iteration early, they may analyze the cause and take necessary
teps if required. Multiple reasons may act behind the abandonment of
hanges such as resource allocation, job environment, efficiency mis-
atch between the author and the reviewer, and even their relations.

ome of these may be addressed well by the early intervention of the
anagement and thus revert the result of a particular review-iteration.
hus the company may save lots of time and resources.

Indeed, code review is a very important aspect of modern soft-
are engineering. Large software companies, as well as Open Source
rojects, are practicing it with care. Researchers are trying to generate
nsight from large repositories of code review and try to bring efficiency
n the process to save the cost of production. In this work, we study a
elatively under-studied problem of predicting whether a code change
ill eventually be merged or abandoned at an early stage of the code

eview process. We design a machine learning model to apply carefully
elected features generated as a result of communication between the
evelopers and the reviewers. Our developed tool PredCR is expected
o save wastage of effort or help to recover from being abandoned by
nviting early intervention of the management.
Software Developers. The code review process requires serious

ffort and also is time-consuming. The authors and reviewers involved
n a review iteration are likely to get frustrated if they see that their
ffort goes in vain, i.e., a patchset has to be abandoned wasting their
fforts for quite some time. If they get an early indication from our
ool that their current review process is going in a negative direction,
hey may become cautious, seek external/management help, or at least
e prepared mentally. If the management makes a decision early, their
fforts would be saved. Thus it would benefit the practitioners.
Software Engineering Researchers. Prior SE researchers followed

ifferent approaches including statistical methods, parametric models,
nd machine learning (ML) methods for software effort and dura-
ion prediction [36], software cost prediction [37], software fault or
efect prediction [38,39], etc. Search-based peer reviewer recommen-
ation [40] is another related area. Different prediction models were
ntroduced in the SE (Software Engineering) domain such as predicting
he question quality [41] and response time [42] in Stack Overflow.
n these models, the authors exploit the interactions among users in
ifferent contexts related to software engineering. Bosu et al. [43]
dentified factors that lead to useful code reviews. Some prior research
uggests that a higher number of reviewers reduces the number of bugs
nd increases the probability of acceptability [44,45]. The experience
f the reviewers sometimes leads to useful code changes [21,45].

In addition to the prediction of our model, other implications from
ur study are: (1) Fairness in machine learning models needs to
e ensured before deploying them in practice and their potential bias
hould be thoroughly investigated (2) Using Code Review Bots is
mportant in reducing the number of abandoned changes as well as
eviewer workloads.
Fairness in machine learning models is important as lots of man-

al work in the software life-cycle is being replaced by automated tools.
n Section 4.3 we have shown that prediction models can be biased
gainst new developers. This implies that similar issues can happen in
oftware defect prediction [7,27,39], issue classification [26], and other
achine learning models if not properly investigated.
Code Review Bots have been widely being used in OSS projects.
14

n Table 8, the feature importance for reviewer dimension shows their t
significant impact on the code change outcomes. So useful feedback
from review tools can help alleviate the reviewer’s burden as well as
improve change outcome [46]. Our shared raw dataset can be used
to more thoroughly analyze how much these tools helped to save
maintenance resources.

6. Threats to validity

Threats to internal validity refers to errors in our implementation.
e have cross-checked all data mined to ensure the data used is valid

nd contains all changes available within that period. We have also
emoved changes for which full data was not available (i.e. some old
hanges were missing patch data from Gerrit response). We have rerun
he pre-processing steps several times to ensure the same statistics of
he final dataset. We have removed changes for which the outcome is
bvious (i.e. changes labeled ‘‘WIP" or ‘‘DO NOT MERGE’’ etc.). So that
he dataset only contains changes for which prediction is needed. To
ake the comparisons compatible with the state-of-the-art, we have

ollowed the process presented in their work and reproduced their fea-
ure set and experimentation. Our experiments follow the longitudinal
etup, which prevents past data to be used in training. This same setup
as been followed by prior works [2,4] in similar scenarios. As the
ataset is an imbalanced one, we need to prevent the model from being
iased on the majority class. We have balanced classification loss to
ounter the data imbalance problem. We have also shown the effect of
yper-tuning on model performance. Then made comparisons with the
tate-of-the-art [4] using all metrics presented by them.
Threats to external validity refers to the generalization of our tool.

or PredCR, it is validated by our test results for unseen data (Sec-
ion 4.1). Also despite having large feature importance for experience-
elated features, for new contributors, PredCR still outperforms the
tate-of-the-art (Section 4.3). So there is no threat to use this model
ven developers who are new or past tracks are missing. Also with
he increase of the training dataset, we have shown a positive impact
n test results in later half folds of our longitudinal cross-validation
esult (Section 4.5). Even when prediction is updated for each revision,
redCR shows significant performance (Section 4.4). With different
umbers of 𝐾, PredCR will still show better predictions than the state-
f-the-art (Section 5.1.1). PredCR takes little time to train and test
Section 5.1.2) which validates its practical usability. We have also
hown in Section 5.1.6 PredCR pre-trained on a project can still perform
ell for external projects. Even within projects, we found there are

ub-projects from different domains and new sub-projects keep getting
dded to the project over time. PredCR still maintains a significant
verall performance. However, the prioritization given by PredCR does
ot imply the importance of the code change or how fast it will
e closed. So users need to be cautious when using PredCR in such
cenarios.
Threats to construct validity refers to the suitability of our evalua-

ion metrics. We have used the evaluation metrics following prior works
n the same domain. Both AUC and cost-effectiveness have been widely
sed in the prediction models of software engineering studies [1,4,7].
e have presented precision, recall, and f1-scores for both classes so

hat model performance for both of them can be investigated. Also, the
etrics have been calculated after averaging over multiple runs of the

xperimentation. So we believe there is little threat to the validity of
ur work in practice.

. Conclusion

Modern code review is an integral part to ensure the quality and
imely delivery of software systems. Unfortunately, around 12% of the
ode changes in a software system are abandoned, i.e, they are not
erged to the main code base of the software system. As such, any tool

o detect such abandoned changes well in advance can assist software

eams with reduced time and effort (e.g., by prioritizing code changes



Information and Software Technology 142 (2022) 106756K. Islam et al.
for review that is most likely going to be merged). In this paper, we
present a tool named PredCR that can predict at an early stage of
a code review iteration whether a code change would be merged or
abandoned eventually. This tool is developed using a LightGBM-based
classifier following a supervised learning approach including features
related to the reviewer, author, project, text, and code changes and a
dataset of 146,612 code changes from three Gerrit open source projects.
PredCR outperforms the state-of-the-art tool by Fan et al. [4] by 14%–
23% (in terms of AUC score) and achieves around 85% AUC score on
average. We have conducted an empirical study on the applicability of
PredCR. We find that the new features like reviewer dimensions that
are introduced in PredCR are the most informative. We also find that
compared to the baseline, PredCR is more effective towards reducing
bias against new developers. PredCR uses historical data in the code
review repository and as such the performance of PredCR improves as
a software system evolves with new and more data. Therefore, PredCR
offers more accuracy over the state-of-the-art baseline to early predict
merged/abandoned code changes in diverse use cases. As such, PredCR
can help to reduce the waste of time and efforts of all stakeholders
(e.g., program author, reviewer, project management, etc.) involved
in code reviews with early prediction, which can be used to prioritize
efforts and time during the triaging of code changes for reviews.

CRediT authorship contribution statement

Khairul Islam: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Project administration, Resources, Soft-
ware, Validation, Writing – original draft, Writing – review & editing.
Toufique Ahmed: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Project administration, Resources, Soft-
ware, Validation, Writing – original draft, Writing – review & editing.
Rifat Shahriyar: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Project administration, Resources, Soft-
ware, Validation, Writing – original draft, Writing – review & editing.
Anindya Iqbal: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Project administration, Resources, Soft-
ware, Validation, Writing – original draft, Writing – review & editing.
Gias Uddin: Conceptualization, Data curation, Formal analysis, In-
vestigation, Methodology, Project administration, Resources, Software,
Validation, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] X. Xia, D. Lo, E. Shihab, X. Wang, X. Yang, Elblocker: Predicting blocking bugs
with ensemble imbalance learning, Inf. Softw. Technol. 61 (2015) 93–106.

[2] G. Jeong, S. Kim, T. Zimmermann, K. Yi, Improving code review by pre-
dicting reviewers and acceptance of patches, 2009, pp. 1–18, Research on
Software Analysis for Error-Free Computing Center Tech-Memo (ROSAEC MEMO
2009-006).

[3] A. Bacchelli, C. Bird, Expectations, outcomes, and challenges of modern code
review, in: 2013 35th International Conference on Software Engineering, ICSE,
IEEE, 2013, pp. 712–721.

[4] Y. Fan, X. Xia, D. Lo, S. Li, Early prediction of merged code changes to prioritize
reviewing tasks, Empir. Softw. Eng. (2018) 1–48.

[5] G. Gousios, M. Pinzger, A.v. Deursen, An exploratory study of the pull-based soft-
ware development model, in: Proceedings of the 36th International Conference
on Software Engineering, ACM, 2014, pp. 345–355.

[6] C. Costa, J. Figueiredo, A. Sarma, L. Murta, TIPMerge: recommending devel-
opers for merging branches, in: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016, pp.
998–1002.

[7] T. Jiang, L. Tan, S. Kim, Personalized defect prediction, in: 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE, Ieee, 2013,
15

pp. 279–289.
[8] P. Thongtanunam, S. McIntosh, A.E. Hassan, H. Iida, Review participation in
modern code review, Empir. Softw. Eng. 22 (2) (2017) 768–817.

[9] G. Zhao, D.A. da Costa, Y. Zou, Improving the pull requests review process using
learning-to-rank algorithms, Empir. Softw. Eng. 24 (4) (2019) 2140–2170.

[10] V. Kovalenko, A. Bacchelli, Code review for newcomers: is it different? Proceed-
ings of the 11th International Workshop on Cooperative and Human Aspects of
Software Engineering, 2018, pp. 29–32.

[11] Y. Jiang, B. Adams, D.M. German, Will my patch make it? and how fast? case
study on the linux kernel, in: 2013 10th Working Conference on Mining Software
Repositories, MSR, IEEE, 2013, pp. 101–110.

[12] V.J. Hellendoorn, P.T. Devanbu, A. Bacchelli, Will they like this?: Evaluating
code contributions with language models, in: Proceedings of the 12th Working
Conference on Mining Software Repositories, IEEE Press, 2015, pp. 157–167.

[13] Y. Huang, N. Jia, X. Zhou, K. Hong, X. Chen, Would the patch be quickly
merged? in: International Conference on Blockchain and Trustworthy Systems,
Springer, 2019, pp. 461–475.

[14] Ç.E. GEREDE, Z. Mazan, Will it pass? Predicting the outcome of a source code
review, Turk. J. Electr. Eng. Comput. Sci. 26 (3) (2018) 1343–1353.

[15] Y. Kamei, E. Shihab, B. Adams, A.E. Hassan, A. Mockus, A. Sinha, N. Ubayashi,
A large-scale empirical study of just-in-time quality assurance, IEEE Trans. Softw.
Eng. 39 (6) (2013) 757–773.

[16] Y. Shin, R. Bell, T. Ostrand, E. Weyuker, Does calling structure information
improve the accuracy of fault prediction? in: Mining Software Repositories, 2009.
MSR’09. 6th IEEE International Working Conference on, IEEE, 2009, pp. 61–70.

[17] X. Yang, R.G. Kula, N. Yoshida, H. Iida, Mining the modern code review
repositories: A dataset of people, process and product, in: Proceedings of the 13th
International Conference on Mining Software Repositories, 2016, pp. 460–463.

[18] P.C. Rigby, M.-A. Storey, Understanding broadcast based peer review on open
source software projects, in: 2011 33rd International Conference on Software
Engineering, ICSE, IEEE, 2011, pp. 541–550.

[19] O. Baysal, O. Kononenko, R. Holmes, M.W. Godfrey, Investigating technical and
non-technical factors influencing modern code review, Empir. Softw. Eng. 21 (3)
(2016) 932–959.

[20] A. Mockus, D.M. Weiss, Predicting risk of software changes, Bell Labs Tech. J.
5 (2) (2000) 169–180.

[21] O. Baysal, O. Kononenko, R. Holmes, M.W. Godfrey, The influence of non-
technical factors on code review, in: Reverse Engineering (WCRE), 2013 20th
Working Conference on, IEEE, 2013, pp. 122–131.

[22] S. Wang, C. Bansal, N. Nagappan, A.A. Philip, Leveraging change intents for
characterizing and identifying large-review-effort changes, in: Proceedings of the
Fifteenth International Conference on Predictive Models and Data Analytics in
Software Engineering, 2019, pp. 46–55.

[23] A.E. Hassan, Predicting faults using the complexity of code changes, in: 2009
IEEE 31st International Conference on Software Engineering, IEEE, 2009, pp.
78–88.

[24] R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction, in: Proceedings of
the 30th International Conference on Software Engineering, 2008, pp. 181–190.

[25] N. Nagappan, T. Ball, A. Zeller, Mining metrics to predict component failures,
in: Proceedings of the 28th International Conference on Software Engineering,
2006, pp. 452–461.

[26] M.S. Rakha, C.-P. Bezemer, A.E. Hassan, Revisiting the performance evaluation
of automated approaches for the retrieval of duplicate issue reports, IEEE Trans.
Softw. Eng. 44 (12) (2017) 1245–1268.

[27] A.A. Bangash, H. Sahar, A. Hindle, K. Ali, On the time-based conclusion stability
of cross-project defect prediction models, Empir. Softw. Eng. 25 (6) (2020)
5047–5083.

[28] J.H. Friedman, Stochastic gradient boosting, Comput. Statist. Data Anal. 38 (4)
(2002) 367–378.

[29] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[30] P. Geurts, D. Ernst, L. Wehenkel, Extremely randomized trees, Mach. Learn. 63

(1) (2006) 3–42.
[31] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, T.-Y. Liu,

Lightgbm: A highly efficient gradient boosting decision tree, in: Advances in
Neural Information Processing Systems, 2017, pp. 3146–3154.

[32] P. Weißgerber, D. Neu, S. Diehl, Small patches get in! in: Proceedings of the
2008 International Working Conference on Mining Software Repositories, 2008,
pp. 67–76.

[33] P. Probst, A.-L. Boulesteix, B. Bischl, Tunability: Importance of hyperparameters
of machine learning algorithms, J. Mach. Learn. Res. 20 (53) (2019) 1–32.

[34] J.W. Tukey, et al., Exploratory Data Analysis, Vol. 2, Reading, Mass., 1977.
[35] Q. Wang, X. Xia, D. Lo, S. Li, Why is my code change abandoned? Inf. Softw.

Technol. 110 (2019) 108–120.
[36] M. Shepperd, G. Kadoda, Using simulation to evaluate prediction techniques [for

software], in: Software Metrics Symposium, 2001. METRICS 2001. Proceedings.
Seventh International, IEEE, 2001, pp. 349–359.

[37] M. Jorgensen, M. Shepperd, A systematic review of software development cost
estimation studies, IEEE Trans. Softw. Eng. 33 (1) (2007).

[38] T. Hall, S. Beecham, D. Bowes, D. Gray, S. Counsell, A systematic literature
review on fault prediction performance in software engineering, IEEE Trans.
Softw. Eng. 38 (6) (2012) 1276–1304.

http://refhub.elsevier.com/S0950-5849(21)00203-2/sb1
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb1
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb1
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb2
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb3
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb3
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb3
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb3
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb3
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb4
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb4
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb4
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb5
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb5
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb5
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb5
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb5
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb6
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb6
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb6
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb6
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb6
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb6
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb6
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb7
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb8
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb8
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb8
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb9
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb9
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb9
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb11
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb11
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb11
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb11
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb11
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb12
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb12
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb12
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb12
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb12
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb13
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb13
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb13
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb13
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb13
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb14
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb14
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb14
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb15
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb16
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb16
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb16
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb16
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb16
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb18
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb19
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb20
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb21
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb23
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb23
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb23
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb23
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb23
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb26
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb26
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb26
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb26
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb26
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb27
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb27
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb27
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb27
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb27
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb28
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb28
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb28
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb29
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb30
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb30
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb30
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb31
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb31
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb31
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb31
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb31
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb33
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb33
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb33
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb35
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb35
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb35
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb36
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb36
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb36
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb36
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb36
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb37
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb37
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb37
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb38
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb38
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb38
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb38
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb38


Information and Software Technology 142 (2022) 106756K. Islam et al.
[39] M. Shepperd, D. Bowes, T. Hall, Researcher bias: The use of machine learning
in software defect prediction, IEEE Trans. Softw. Eng. 40 (6) (2014) 603–616.

[40] A. Ouni, R.G. Kula, K. Inoue, Search-based peer reviewers recommendation in
modern code review, in: Software Maintenance and Evolution (ICSME), 2016
IEEE International Conference on, IEEE, 2016, pp. 367–377.

[41] A. Baltadzhieva, G. Chrupała, Predicting the quality of questions on stackover-
flow, in: Proceedings of the International Conference Recent Advances in Natural
Language Processing, 2015, pp. 32–40.

[42] J. Goderie, B.M. Georgsson, B. van Graafeiland, A. Bacchelli, Eta: Estimated
time of answer predicting response time in stack overflow, in: Mining Software
Repositories (MSR), 2015 IEEE/ACM 12th Working Conference on, IEEE, 2015,
pp. 414–417.

[43] A. Bosu, M. Greiler, C. Bird, Characteristics of useful code reviews: An empirical
study at microsoft, in: Mining Software Repositories (MSR), 2015 IEEE/ACM
12th Working Conference on, IEEE, 2015, pp. 146–156.
16
[44] G. Bavota, B. Russo, Four eyes are better than two: On the impact of code
reviews on software quality, in: Software Maintenance and Evolution (ICSME),
2015 IEEE International Conference on, IEEE, 2015, pp. 81–90.

[45] O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao, M.W. Godfrey, Investigating code
review quality: Do people and participation matter? in: Software Maintenance
and Evolution (ICSME), 2015 IEEE International Conference on, IEEE, 2015, pp.
111–120.

[46] M. Wessel, A. Serebrenik, I. Wiese, I. Steinmacher, M.A. Gerosa, Effects of
adopting code review bots on pull requests to oss projects, in: 2020 IEEE
International Conference on Software Maintenance and Evolution, ICSME, IEEE,
2020, pp. 1–11.

http://refhub.elsevier.com/S0950-5849(21)00203-2/sb39
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb39
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb39
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb40
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb40
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb40
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb40
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb40
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb42
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb42
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb42
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb42
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb42
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb42
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb42
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb43
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb43
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb43
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb43
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb43
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb44
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb44
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb44
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb44
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb44
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb45
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb45
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb45
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb45
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb45
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb45
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb45
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb46
http://refhub.elsevier.com/S0950-5849(21)00203-2/sb46

	Early prediction for merged vs abandoned code changes in modern code reviews
	Introduction
	Related work
	Early prediction in code reviews
	Review tool used
	Feature dimensions
	Programming language dependency

	Empirical study setup 
	Data collection and preprocessing
	Studied features
	Feature dimension 1. Reviewer 
	Feature dimension 2. Author 
	Feature dimension 3. Project
	Feature dimension 4. Text 
	Feature dimension 5. Code

	Performance metrics
	Standard performance metrics
	Improvement analysis metrics

	Experimentation setup and approach 

	Empirical study results
	Can our proposed approach outperform the state-of-the-art? (RQ1)
	Motivation
	Approach
	Results

	How effective is PredCR when only one feature dimension is used? (RQ2)
	Motivation
	Approach
	Results

	How well does the model handle bias against new authors? (RQ3)
	Motivation
	Approach
	Results

	How well does our approach work while using multiple revisions? (RQ4)
	Motivation
	Approach
	Results

	How well does the model improve over time? (RQ5)
	Motivation
	Approach
	Results


	Discussions
	A deeper dive into PredCR performance
	Effectiveness of PredCR with gradual increase in code changes
	Time efficiency
	Impact of hyper tuning of PredCR
	Impact of excluding each dimension 
	Developer effort spent for changes 
	Cross project performance 

	Implications of findings

	Threats to validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References


