
Information and Software Technology 137 (2021) 106603

A
0

H
t
O
P
a

b

A

K
S
S
G
R
N
E

1

d
[
t
i
r
a

h
R

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

ow do developers discuss and support new programming languages in
echnical Q&A site? An empirical study of Go, Swift, and Rust in Stack
verflow

artha Chakraborty a, Rifat Shahriyar a, Anindya Iqbal a, Gias Uddin b,∗

Bangladesh University of Engineering and Technology, Bangladesh
University of Calgary, Canada

R T I C L E I N F O

eywords:
tack Overflow
wift
o
ust
ew language
volution

A B S T R A C T

Context: New programming languages (e.g., Swift, Go, Rust, etc.) are being introduced to provide a better
opportunity for the developers to make software development robust and easy. At the early stage, a
programming language is likely to have resource constraints that encourage the developers to seek help
frequently from experienced peers active in Question–Answering (QA) sites such as Stack Overflow (SO).
Objective: In this study, we have formally studied the discussions on three popular new languages introduced
after the inception of SO (2008) and match those with the relevant activities in GitHub whenever appropriate.
For that purpose, we have mined 4,17,82,536 questions and answers from SO and 7,846 issue information along
with 6,60,965 repository information from Github. Initially, the development of new languages is relatively
slow compared to mature languages (e.g., C, C++, Java). The expected outcome of this study is to reveal the
difficulties and challenges faced by the developers working with these languages so that appropriate measures
can be taken to expedite the generation of relevant resources.
Method: We have used the Latent Dirichlet Allocation (LDA) method on SO’s questions and answers to
identify different topics of new languages. We have extracted several features of the answer pattern of
the new languages from SO (e.g., time to get an accepted answer, time to get an answer, etc.) to study
their characteristics. These attributes were used to identify difficult topics. We explored the background of
developers who are contributing to these languages. We have created a model by combining Stack Overflow
data and issues, repository, user data of Github. Finally, we have used that model to identify factors that affect
language evolution.
Results: The major findings of the study are: (i) migration, data and data structure are generally the difficult
topics of new languages, (ii) the time when adequate resources are expected to be available vary from language
to language, (iii) the unanswered question ratio increases regardless of the age of the language, and (iv) there
is a relationship between developers’ activity pattern and the growth of a language.
Conclusion: We believe that the outcome of our study is likely to help the owner/sponsor of these languages
to design better features and documentation. It will also help the software developers or students to prepare
themselves to work on these languages in an informed way.
. Introduction

New programming languages are being introduced to make software
evelopment easy, maintainable, robust, and performance-guaranteed
1,2]. For example, Swift was introduced in June 2014 as an alternative
o Objective-C to achieve better performance. At the initial stage of
ts lifetime, a programming language is likely to have constraints of
esources, and consequently, developers using these languages face
dditional challenges [3]. Naturally, the developers seek help from

∗ Corresponding author.
E-mail address: gias.uddin@ucalgary.ca (G. Uddin).

community experts of Question–Answering (QA) sites such as Stack
Overflow (SO). Hence, it is expected that the discussions on issues
related to a new language in SO represent the different characteristics
of the growth of that language and also reflect the demands of the
development community who use that language.

After the release of a new programming language, it takes time for
the developers to get acquainted with that language. Earlier releases
of new languages often contain bugs. The developers who work on the
vailable online 27 April 2021
950-5849/© 2021 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.infsof.2021.106603
eceived 12 October 2020; Received in revised form 28 March 2021; Accepted 20
 April 2021

http://www.elsevier.com/locate/infsof
http://www.elsevier.com/locate/infsof
mailto:gias.uddin@ucalgary.ca
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2021.106603&domain=pdf

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.

m
o
c
w
h
l
a
o
n
g

c
a
q
O
P
S
p
e
d
t
v
c

2

2

s
l
d
t
r
r
v
h
s

2

i
l
f
l
a
f
e
g

new languages are likely to face problems that are similar to the solved
problems of mature languages. Developers of the new languages often
feel the absence of a library or feature that has already been available
in other languages. Therefore, the discussions on a new language are
likely to differ from that of a mature language. To the best of our
knowledge, there is yet to be any software engineering research that
focuses on the specific characteristics of the new languages by mining
relevant discussions from SO.

In this study, we would like to fill this gap, analysing the discussions
on Swift, Go, and Rust that are the most popular programming lan-
guages introduced after the inception of SO (2008). Our study is limited
to these three languages because other new languages have very small
footprints in SO. Being born after SO, the evolution of these languages,
right from the beginning, is expected to be reflected in SO. From now
on, by the new language, we imply Swift, Go, and Rust languages. We
also match the SO discussions with the relevant activities in GitHub in
the required cases.

The primary goal of this research is to study how software develop-
ers discuss and support three new programming languages (Go, Swift,
Rust) in Stack Overflow. On this goal, we conduct two studies: (1)
Understanding New Language Discussions: We aim to understand what
topics developers discuss about the three new programming languages,
whether and how the topics are similar and/or different across the
languages, and how the topics evolve over time. (2) Understanding New
Language Support: We aim to understand what difficulties developers
face while using the three new languages, and when and how adequate
resources and expertise become prevalent to support the three new
programming languages in Stack Overflow. In particular, we answer
five research questions around the two studies as follows.

• Study 1. New Language Discussions: We answer two research
questions:

RQ1. What topics are discussed related to Swift, Go, and Rust?
This investigates the discussion topics of the developers of new
languages. Identification of the discussion topics may help the
sponsor to design a feature roadmap that actually facilitates
the requirement of developers.

RQ2. How do the discussed topics evolve over time?
The community’s discussion topics is likely to vary over time,
as resources evolve continuously. This analysis would enable
us to investigate any possible relation between discussion top-
ics and real-world dynamics, such as new releases. We found
that a new release does not initiate any significant change in
the evolution of discussion topics.

• Study 2. New Language Support: We answer three research ques-
tions:

RQ3. How does the difficulty of topics vary across the lan-
guages?
Developers of new languages face problems that are rarely
answered or get delayed answers. By the delayed answer, we
imply that answer which is accepted by the user and received
after the median answer interval of that month. We want to
know about these questions so that special measures can be
taken to answer this question. We found that questions related
to migration, data and data structure are considered as difficult
topics in all three languages.

RQ4. When were adequate resources available for the new pro-
gramming languages in Stack Overflow?
In this research question, we want to know the time interval,
after which we can expect the availability of these resources
of new languages in Stack Overflow at a satisfactory level. The
use of programming languages is significantly related to the
availability of resources of those languages. This question will
2

help developers to make design decisions related to software
development. We have seen that two years after the release,
sufficient resources can be expected for Swift, whereas this
period is three years for Go. We have also found the evidence
of having an inadequate resource of Rust language in Stack
Overflow.

RQ5. Is there any relationship between the growth of the three
programming languages and developers’ activity
patterns? This question investigates the relationship between
developers’ activity (e.g., question, answer) and the growth of
a language. Language projects maintain a Github repository
that supports feature requests [4] and bug reports through
Github issues. We used those issues as an indirect measure for
language growth. We found evidence of relationships between
developers’ activity and the growth of a language.

Our findings show that questions related to ‘‘migration’’ are com-
on among new languages. To facilitate developer efforts, platform

wners should provide detailed documentation of steps to migrate from
onventional sources. In this study, we identified the duration, after
hich adequate resources become available in SO. This finding can
elp developers to make any decisions regarding migration to a new
anguage. In addition, language owners should provide support until
dequate resources become available in the QA community. Moreover,
ur study identifies some of the factors that influence the evolution of
ew languages. The finding can help language owners to prioritize their
oals.

A preliminary version of this paper appeared previously as a short
onference paper [5]. The only overlap between the previous paper [5]
nd the current paper is Research Question 4, i.e., ‘When were ade-
uate resources available for the new programming languages in Stack
verflow?’.
aper Organization. The rest of the paper is organized as follows.
ection 2 describes the background of our study and the data collection
rocedure. Section 3 reports the research questions about develop-
rs’ discussion. Section 4 presents the research questions about the
evelopers’ support to the three new languages. Section 5 discusses
he implications of our findings. Section 6 discusses the threats to
alidity. Section 7 presents the related work to our study, and Section 8
oncludes the paper.

. Background and data collection

.1. Stack Overflow Q&A site

Q&A sites have become very popular in recent years. There are
everal Q&A sites that programmers use to ask questions, solve prob-
ems they encounter, provide answers to other people’s problems, and
iscuss different approaches. Stack Overflow is the most popular of
hese sites. Since its inception in 2006, it has become a popular and
eliable platform for sharing knowledge among programmers. As a
esult, Stack Overflow has plenty of resources for programmers on a
ariety of topics. From the beginning to 2020, 49,53,854 developers
ave asked 2,01,28,125 questions on 59,524 different topics in the
tack overflow.

.2. New programming languages discussions in Stack Overflow

About 37 [6] programming languages have been released after the
nception of Stack Overflow in 2008. Most of the new languages (re-
eased after 2008) have a little footprint in SO, which is insufficient to
ormally analyse the interaction between developers and programming
anguages. For selecting the language, we have used the SO survey [7]
nd the newly released language list [6]. In Table 1, we show the
ootprints of the languages in SO. To do a comparative analysis of the
volution with three new languages, we picked one high footprint lan-
uage (Java) and one medium footprint language (Python). Javascript

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.

h
W
t
o

2

s

F
t

t
a
i
e
r

𝛼

Table 1
Stack Overflow footprint of programming languages.

Language Total post count

Javascript 4 875 127(10.6399%)
Java 4 101 937(8.9524%)
Php 3 515 748(7.673%)
C++ 2 575 423(5.6208%)
Swifta 538 542(1.1754%)
Python 276 022(0.6024%)
Goa 91 460(0.1996%)
Rusta 23 850(0.0521%)
Kotlina 5936(0.013%)
Darta 3991(0.0087%)
Ballerinaa 403(0.0009%)

aReleased after 2008.

Fig. 1. An overview of the methodology of our study.

as the highest footprint, but it is primarily used for web clients only.
e have selected Java as the representative of top-tier languages due

o its wide range of use. We have selected Python as the representative
f mid-tier languages due to its recent emergence.

.3. Data collection

The following steps are carried out to develop the dataset for this
tudy:

1. We download the SO dataset,
2. We identify list of tags related to the three languages in SO,
3. We extract all questions and accepted related to the list of tags from

SO,
4. We extract issues reported to the GitHub repositories of the three

languages.

ig. 1 shows an overview of the methodology of our study. We explain
3

he steps below.
2.3.1. Download Stack Overflow dataset
For our analysis, we have collected the January 2018 Stack Over-

flow data dump, which is available in the Stack Exchange data dump.
In Stack Overflow schema, both question and answer are considered as
post. The post table of the data dump contains all the information of a
post like a title, tags, body, creation date, view count, type (question
or answer), and accepted answer identifier. An answer is accepted if
the questioner marks that answer as accepted. Our dataset includes
4,17,82,536 questions and answers posted over 9 years from August
2008 to January 2018 by 39,40,962 users of Stack Overflow. Among
these posts 1,63,89,567 (39%) are questions and 2,52,97,926 (61%) are
answers of which 87,04,031 (21%) are marked as accepted answers.

2.3.2. Develop tag set
To compare the growth of languages, we have to separate the posts

by language. Posts on Stack Overflow can be about any topic, and
we need a way to identify posts by language. Every Stack Overflow
post is associated with at least one tag. We consider a post associated
with one of the new languages if that contains at least one tag of the
respective language tag. We have created an initial set of tag 𝜏0 for each
of the languages. One of the authors checked the initial tagset. Like
Vásquez et al. [2], we scaled down the full Stack Overflow (SO) tag set
by performing a wildcard query (e.g.; ‘‘SELECT * FROM Tags WHERE
TagName like ‘%swift%’ order by Count desc’’). After that, the search
space becomes feasible to perform a manual inspection. The initial
tagset is available at GitHub. Next, we go through the Stack Overflow
dataset and extract questions 𝜌 whose tags contain a tag from 𝜏0.
Third, we extract tags of the posts in 𝜌 to form the set of candidate
ags 𝜏. Now we have a set of tags 𝜌 for each language, which includes
ll tags of that language. However, set 𝜌 may include tags that may be
rrelevant to new languages. Hence, following the approach of Rosen
t al. [8], we have used two heuristics, 𝛼 and 𝛽, to find the significantly
elevant tags for each language.

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑎𝑔 𝑡 𝑖𝑛 𝜌
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑎𝑔 𝑡 𝑖𝑛

(1)

𝛽 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑎𝑔 𝑡 𝑖𝑛 𝜌

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑡𝑠 𝑖𝑛 𝜌
(2)

We have experimented with a broad range of 𝛼 and 𝛽 and found
that 𝛼 = 0.01 and 𝛽 = 0.01 provides a significantly relevant set of tags.
The values are consistent with previous research on finding tags for big
data or concurrency tags [9,10]. The tag set used to extract posts in this
study is available at GitHub.

Our new language tag set is extensive and covers a large spectrum
of tags related to new languages. The name of language or language
versions is a highly relevant tag to identify posts. Swift 2.1, go, and rust
are this kind of tag in our tag set. In terms of relevance, the next type
of tag is the name of a library/framework with or without a version.
As these libraries/frameworks are applicable to a particular language
they can be used to identify the post of that language. These types of
tags in our tag set are grails2.0, beego, cocoa, rust-tokio, etc. The third
type of tag is named after a specific feature of the language. Goroutine,
unmarshalling, traits are such kind of tag in our tag set. In addition
to highly focused tags, our tag set also includes generic tags such as
concurrency, protocol.

2.3.3. Extract posts of new languages
Using the tag set prepared in the previous step, we have separated

the posts by language. We have 4,37,880 Swift posts, consisting of
1,88,065 (43%) questions and 2,49,815 (57%) answers of which 94,310
(21.6%) are accepted answers. We have 72,843 Go posts, consisting of
30,286 (41.6%) questions and 42,557 (58.4%) answers of which 19,178
(26.3%) are accepted answers. We have 18,311 Rust posts, consisting
of 8083 (44.1%) questions and 10,228 (55.9%) answers of which 5964
(32.6%) are accepted answers.

https://git.io/JTIqL
https://git.io/JTIqL
https://git.io/JTIqL
https://git.io/JTIqL
https://git.io/JTIqL
https://git.io/JTIqL
https://git.io/JTIqL
https://git.io/JTIqL
https://git.io/JTIqL
https://git.io/JTIqL
https://git.io/JTIqL
https://git.io/JTIqL

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.
2.3.4. Preprocess new language post set
In this step, posts of the new language are preprocessed to reduce

noise. The preprocessing steps include the removal of code segments,
HTML tag, and URL, exclusion of stop words (e.g., a, the, is), and word
stemming. We have used porter stemming for converting the word into
their root form.

2.3.5. Model and label new language topics
In this step, we use the Gensim implementation of latent Dirichlet

allocation (LDA) to identify new languages’ topics. Previous studies
have pointed that LDA topics may be subject to change if the order
of documents is changed. Thus we have used a differential evolution
algorithm to select LDA parameters. This approach has made our topics
more stable. After extracting the topic, we manually labelled the topics
with an appropriate title.

2.3.6. Calculate topic absolute impact
The absolute topic impact shows the absolute proportion of a partic-

ular topic in a particular month’s posts. In this step, the absolute impact
of topics are calculated using Eq. (5).

2.3.7. Calculate topic popularity & difficulty
In this step, for each topic, we have extracted the number of

posts without accepted answers and the median time to answer. Later
we have calculated the correlation between without accepted answer
percentage and the median time to answer.

2.3.8. Calculate quality score and interaction score
We have calculated the quality score and interaction score for each

language using Eqs. (7) and (6). After that, we used the scores to
determine the stable point date, a date after which sufficient resources
would be available in the SO.

2.3.9. Data extraction from Github & model developer activity
GitHub provides access to data of public repositories and users

through its public API. The new languages have their official repository
in GitHub. In this step, we have collected the creation date and closing
date of all the issues from these new languages’ official repositories.
GitHub issues have two states, ‘open’ and ‘closed’. As soon as an issue
is taken care of, it changes its state from ‘open’ to ‘closed’. We collected
states and frequencies of the issues. Then for each month, we collected
the number of repositories and users of each new language. Github sets
the dominant programming language of a repository as the language of
that repository. We have used Github Search for collecting repository
and user count. Using that specific search language, one can search
and count the repositories of a particular language. We have queried
for each month and each of the languages. In the search process, we
have excluded the fork repositories. Another part of Github data was
users. To collect user data, we have collected all the repositories of a
particular language, and then we collected the unique committers of
those repositories. After finding those committers, we collected their
joining date and counted the number of users joined each month. The
number of repositories and users we have checked are presented in
Fig. 2. Then we used regression to model developers’ activity.

3. Developers’ discussions about the three new languages

3.1. RQ1. What are the topics of discussions related to Swift, Go, and Rust?

3.1.1. Motivation
In this work, we explore the SO footprint of three new languages

introduced after SO and become popular in the developer community
for knowledge sharing. Hence, it is likely that the issues developers
face while working with these languages will be reflected in the posts
and discussions on these languages in SO. If the queries are organized
4

according to topics and characteristics of the responses are analysed
accordingly, it would be helpful for the sponsors of those languages.
The lack of resources (such as proper documentation) will be revealed
for the most visited topics, and the relevant people may address those
in an organized way. Hence, our first research question is intended to
analyse these languages’ discussions by dividing these into different
topics and categories.

3.1.2. Approach
We used LDA to identify the topics of developers’ discussion. LDA

(Latent Dirichlet Allocation) is a generative statistical model commonly
used for topic modelling [11]. In LDA, it is assumed that each document
is a mixture of a small number of topics. It is believed that LDA topics
are related to the order of documents in the dataset. If the order is
changed, the topics will likely be changed. We have calculated the Raw
score for LDA topics to mitigate the risk. The raw score is a modified
version of the Jaccard Index. In calculating the raw score, the LDA
parameters are kept constant, and the data orders are changed. This
process is repeated 10 times to identify the raw score of LDA for one
set of parameters. To ensure topic stability and determine the best LDA
Parameters, we filled up the LDA parameters with a set of arbitrary
values and calculated the raw score for each group. Using the best (in
terms of raw score) parameters of the current run, the second run starts.
This process has been continued for three generations, and we received
the best stability ensuring the LDA parameter. Next, using those pa-
rameters, we run the LDA. From LDA, we received a set of keywords
for each topic. To label the topics, we identified the dominant topic of
all the posts. Next, for each topic, we continued the following labelling
strategy. First, we randomly selected twenty posts, where the dominant
topic is this topic. Then we manually analysed the topic keywords
along with the posts and labelled the topics. The first author merged
the topics into higher level categories first. Then it was reviewed
by the second and third authors. The issues identified were resolved
by a detailed discussion involving all the authors. Furthermore, we
have extracted some of the features of the adopted topics in prior
works [9,10,12] to measure popularity.

• Average view of post: SO collects view counts for each post. Using
this metric, we can get an indication of the public interest. The
intuition is that if many developers view a post, then this post is either
very popular or the problem is common among the developers of new
languages. For this reason, we have collected average views for each
topic.

• Average number of post count as favourite In SO, users can
mark a post as a personal favourite if the post is helpful. Favourite
facility notes things that are important or interesting to developers.
Developers can return to their favourite posts from the favourite tab
in Stack Overflow. We collected the average favourite count for each
topic in the new language. The metric will reveal how helpful/aligned
the posts are with the developers’ goals.

• Average Scores: In SO, an interesting/unique question or best so-
lution can be rewarded by upvote. Where the attribute ‘‘favourite’’
expresses developers’ individual choice, upvote tells the fellow de-
velopers whether the post is useful or not. SO then aggregates the
votes (summation of the upvotes less than the summation of the
downvotes) and presents them as scores. In this study, we summed up
all posts’ scores and divided them by the number of posts to calculate
each topic’s average score. This score of each topic will be used as
metrics of perceived collective values.

3.1.3. Result
The raw score of our approach presents the stability of the topics

identified by LDA. The higher the raw score, the higher the stability.
In this study, we have used three words while calculating the raw
score. The raw score achieved in our study is presented in Table 2. We
also calculated the topic coherence score for our LDA model. The topic

coherence score measures the quality of the extracted topics [13]. The

https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/
https://developer.github.com/v3/

Information and Software Technology 137 (2021) 106603

5

P. Chakraborty et al.

Fig. 2. # of Repositories and Users checked from Github.

Fig. 3. Swift topics and number of their questions.

Fig. 4. Go topics and number of their questions.

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.
Fig. 5. Rust topics and number of their questions.
Table 2
Raw score achieved by our approach.

Language Raw score

Swift 0.88
Go 0.88
Rust 0.66

Table 3
Coherence score of the topics.

Language Coherence score

Swift 0.59
Go 0.56
Rust 0.49

higher the coherence score, the higher the quality of topics. The topic
coherence score is presented in Table 3. Tables 4, 5, and 6 shows the
discussion topics for each language sorted in terms of average views. It
also shows the number of posts related to each topic and its popularity
6

through the popularity metrics: views, likes, and scores received from
users in Stack Overflow.

Swift topics
The percentage of Swift posts related to each topic is presented in

Fig. 3. From Table 4 we can observe that 5 of the 18 topics of Swift
are related to UI. They are User Interface, View Controller Lifecycle,
UI constraint, Gesture Recognition and Graphics. These topics include
questions like, (a) how a specific UI functionality can be achieved, (b)
how to use multiple UI components together, (c) how the life cycle
of view controller that manages applications UI interface changes, (d)
using 2D and 3D graphics components for game development, etc. More
than 17% of the Swift related posts are on these topics. An example
of posts under this topic is a developer asking on Stack Overflow, ‘‘I
am making a game on Xcode using sprite kit it is, and I need to add
an angry bird slingshot like to the ball, I don’t know how can I apply
it’’. Swift is mainly used to develop iOS applications and games with
state-of-the-art user interfaces. As a result, UI related posts are generally
higher for Swift.
Table 4
Swift topics, categories, and their popularity.

Category Topic Avg. Views Avg. Favourite Avg. Score #Posts

Application

Request handling 939.87 0.41 1.17 15 171
Use of simulator 985.51 0.52 1.5 11 819
Error handling 1416.35 0.41 1.56 16 233
Testing 1482.49 0.65 2.33 6956
Cross platform tools 1486.1 0.6 1.7 7182
Sensor integration 1534.83 0.62 1.65 17 914

Data& Data structure
Portable database 1101.06 0.4 1.26 13 790
Serialization 1291.47 0.49 1.36 10 201
Type conversion 2334.98 0.81 3.33 15 347

Library/SDK
Foundation kit 1103.47 0.45 1.24 11 218
Use of CoreSpotlight 1405.68 0.63 2.4 9274
SDK/Library integration 1617.3 0.75 2.93 13 916

Migration Migration 1408.09 0.73 2.69 13 651

UI

Graphics 695.4 0.46 1.2 13 185
User interface 888.84 0.31 0.85 13 887
View controller lifecycle 1089.92 0.37 1.08 16 927
UI constraints 1376.63 0.42 1.36 14 594
Gesture recognition 1590.26 0.54 1.73 8071

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.

T
T
v
c
a
m
f
p
d
t
p
p
b
t
s

t
t
m
w
a
a
S
O
c
i
v

L
o
F
s
N
t
s

Table 5
Go topics, categories, and their popularity.

Category Topic Avg. Views Avg. Favourite Avg. Score #Posts

Application
Webserver 1245.48 0.59 1.81 2322
Template rendering 1706.95 0.83 2.68 269
Testing 2342.8 1.17 4.43 789

Build compilation Build/Compilation error 1880.5 0.92 2.85 844

Data & Data structure
Database and ORM 1051.49 0.35 1.36 4933
Type conversion 2223.41 0.91 3.3 3493
Unmarshalling/Marshalling 5888.08 1.51 8.11 227

I/O I/O operation 1767.06 0.74 2.54 8263

Library/SDK Library integration error 1858.89 0.7 2.45 7963

Memory Memory handling 2336.88 0.94 3.69 5054

Migration Migration 3949.88 2.27 7.44 128

Parallelism Go channel 1222.28 0.68 2 2301
Go routine 1729.49 0.97 2.96 1823
Table 6
Rust topics, categories, and their popularity.
Category Topic Avg. Views Avg. Favourite Avg. Score #Posts

Data & Data structure

Borrow mechanism 560.88 0.32 2.81 1431
Use of Trait 567.95 0.46 3.39 2224
Mutability 868.59 0.4 3.36 2089
Generic coding 929.63 0.53 4.17 445
Use of Struct 1050.56 0.44 3.89 1468

Library/SDK Cargo 782.68 0.56 3.66 1205

Migration Migration problem 837 0.55 4.55 520

Parallelization Mutex 675.14 0.36 2.81 666
Parallel execution 678.57 0.41 3.2 579
3 of the 18 topics of Swift are related to Data and Data Structure.
hey are Data Handling, Type Conversion, Mutability, and Database.
hese topics include questions like, (a) how to save, stream or receive
ideo data from the network, (b) how to perform custom data type
onversion and how to write proper syntax for typecasting, (c) the use
nd syntax of immutable data, (d) how to perform CRUD and other data
anipulation operation in the portable database and corresponding

ramework provided by Swift, etc. More than 17% of the Swift related
osts are on these topics, and more than 6% of them are related to
ata type conversion. The posts related to data type conversion have
he highest average score (3.1) among the Swift posts, meaning the
osts’ answers are generally helpful to the developers. An example of
osts under this topic is a developer asking on Stack Overflow, ‘‘I am
it confused with typecasting in Swift. Have a small doubt. What is
he difference between ‘as?’, ‘as!’ and only ‘as’. And can we say ‘as’ is
imilar to ‘is’’’.

About 6% of the Swift related posts are related to Migration. This
opic includes questions for two types of migration problems, (a) when
he developers face problems to recreate something in Swift while
igrating from another language, mostly from Objective-C, and (b)
hen the developers face problems in XCode while migrating from
n object project. An example of posts under this topic is a developer
sking on Stack Overflow, ‘‘I’m not sure if this is something to do with
WIFT or some bug, but I used to be able to call this in objective c’’.
bjective-C is the predecessor language of Swift, and migration is quite
ommon between these two. Xcode is an IDE for Swift that generally
ntroduces a new major version every year, and migration from an older
ersion to the newer is quite common as well.

About 6% of the Swift related posts are on the remaining topic,
ibrary/SDK. This topic includes questions related to Swift libraries
r SDK primarily on the Foundation Kit. The Foundation Kit or just
oundation is an Objective-C framework that provides basic classes
uch as wrapper classes and data structure classes with a fixed prefix
S. It is part of the Swift standard library. An example of posts under

his topic is a developer asking on Stack Overflow, ‘‘My NSLog result
7

hows that the string is there. However I get the error mentioned in
the title of this question. When I replace the string ‘resortName’ with
‘location’ and store the whole object instead the error goes away’’.
The Foundation Kit is a fundamental framework that is quite old and
mature, so the number of questions (posts) will likely be lower.

Finding 1: Swift users mostly discussed about application.

Go topics
The percentage of Go posts related to each topic is presented

in Fig. 4. From Table 5 we can observe that 3 of the 13 topics
of Go are related to Data and Data Structure. They are Database,
Type Conversion, Marshalling/Unmarshalling, and Go Channel. These
topics include questions related to, (a) problems in using pointers,
slicing, errors related to reference or pointer, (b) custom types, type
conversion, typecasting in Go, (c) convert Go object/struct to JSON
(marshalling), convert JSON to struct (unmarshalling), pointer mar-
shalling/unmarshalling, (d) proper usage of Go channel through which
goroutines communicate strictly type data, etc. More than 22% of the
Go related posts are on these topics, and more than 16% of them
are related to Unmarshalling/Marshalling. The posts related to Unmar-
shalling/Marshalling have a much higher average score (8.11) among
the Go posts, meaning the posts’ answers are generally helpful to the
developers. An example of posts under this topic is a developer asking
on Stack Overflow, ‘‘what the best way is to perform idiomatic type
conversions in Go. Basically my problem lays within automatic type
conversions between uint8, uint64, and float64. From my experience
with other languages a multiplication of a uint8 with a uint64 will yield
a uint64 value, but not so in go’’.

More than 13% of the Go related posts are related to Memory.
This topic includes questions related to problems in memory allocation
and sharing. Go supports automatic memory management, such as
automatic memory allocation and automatic garbage collection. It is
interesting that developers still face issues related to memory. An ex-

ample of posts under this topic is a developer asking on Stack Overflow,

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.

a

𝑝

i

𝑖

w
s
m

‘‘I want to make an array of size N in go, but I don’t know what N will
be at compile time, how would I allocate memory for it?’’.

More than 2% of the Go related posts are related to Build/
Compilation. This topic includes questions related to build/compilation
problem. Go requires a directory structure for compilation, and it seems
that the structure is not clear to developers. An example of posts under
this topic is a developer asking on Stack Overflow, ‘‘I noticed the go/ast,
go/token, go/parser, etc. packages in the src/pkg/go folder. However,
the GCC compiler was based on C files located in src/cmd/gc. My
question regards the new go command in Go that builds and runs
programs: does this tool depend on the packages I referenced above?’’.
More than 0.3% of the Go related posts are related to Migration. The
posts related to Migration have the second-highest average score (7.4)
among the Go posts, meaning the posts’ answers are generally helpful
to the developers. This topic includes questions related to problem
developers face while migrating their solution in a different language
to Go. An example of posts under this topic is a developer asking on
Stack Overflow, ‘‘We want to rewrite kodingen.com backend with Go,
which currently is Java, running as a daemon using Jsvc. I have never
touched any C in my life; simple requirements give me hope that I can
start using this wonderful language. What would you advise? Is C still
better?’’.

More than 21% of the Go related posts are related to I/O. This
topic includes questions related to all types of I/O operations in Go.
An example of posts under this topic is a developer asking on Stack
Overflow, ‘‘I’m trying to write a golang program to control mpv via
issuing commands to a unix socket. This should cause mpv to quit but
nothing happens’’. More than 20% of the Go related posts are related to
Library/SDK. This topic includes questions related to different libraries,
the majority of them on the ORM library named GORM. An example
of posts under this topic is a developer asking on Stack Overflow,
‘‘I’m using Go with the GORM ORM. I have the following structs. The
relation is simple. One Town has multiple Places and one Place belongs
to one Town. How can i do such query?’’. More than 6% of the Go
related posts are related HTTP. This topic includes questions related to
serving HTTP requests in Go. An example of posts under this topic is a
developer asking on Stack Overflow, ‘‘What website has some good, up
to date resources on using Go HTML/templates, especially in regard to
parsing HTML files’’.

Finding 2: Data and data structure related posts are mostly
discussed among Go developers. They represent 31.2% of posts
of Go language.

Rust topics
The percentage of Rust posts related to each topic is presented

in Fig. 5. From Table 6 5 of the 9 topics of Rust are related to
Data and Data Structure. They are Borrow Mechanism, Use of Trait,
Mutability, Use of Struct, and Generic Coding. These topics include
questions related to (a) use of Rust borrowing mechanism to access
data without taking ownership, (b) use of Rust trait (similar to the
interface in Java) especially by new developers, (c) use of immutable
variable, (d) problems to get the exact behaviour from Rust struct and
in destructuring a struct, (e) use of generic programming that deals with
generic data types and use of traits in generic algorithms, (f) use of
persistent data storage, data iterator, database driver, storing custom
object into database, etc. More than 72% of the Rust related posts are
on these topics, and more than 27% of them are related to Use of
Trait. The posts related to the Generic coding have the second highest
average score (4.1) among the Rust posts, meaning the posts’ answers
are generally helpful to the developers. An example of posts under this
topic is a developer asking on Stack Overflow, ‘‘I’m trying to learn Rust,
I’m wondering if it is possible to declare the reader variable earlier with
a generic type ...’’
8

p

More than 11% of the Rust related posts are related to Library/SDK,
primarily on the Rust package manager, Cargo. This topic includes
questions related to package’s dependencies, compilation of the pack-
ages, and distribution of packages. An example of posts under this topic
is a developer asking on Stack Overflow, ‘‘I am developing a cargo
package which has both a library and an executable of the same name
in the same directory. How can I specify different dependencies for
them both?’’

2 of the 9 topics of Rust are related to Parallelization. They are
Parallel Execution and Mutex. These topics include questions related
to (a) parallel execution in Rust, (b) use of mutex and lock in a
multiprocessing environment. More than 11% of the Rust related posts
are on these topics. An example of posts under this topic is a developer
asking on Stack Overflow, ‘‘I am having trouble understanding how to
modify Option inside a Mutex. Any idea which Rust concept causes
this?’’

More than 4% of the Rust related posts are related to Migration. This
topic includes questions related to problem developers face mimicking
logic in Rust during migration. An example of posts under this topic is
a developer asking on Stack Overflow, ‘‘I am hoping to re-write some
parts of a Python project in Rust to speed up things. I am capable of
returning complex arrays/structures in Python. And this does not work
properly in Rust’’.

Finding 3: More than half (72.05%) of the discussed topic
among Rust developers is related to data and data structure.

3.2. RQ2. How do the discussed topics evolve over time?

3.2.1. Motivation
We have the rare opportunity to observe the evolution of the

discussion on the issues belonging to different topics for these three
new languages from the relevant SO posts. The community’s interest
is likely to vary on particular topics over time, as resources and
surroundings also evolve continuously. Moreover, with evolution, lan-
guages introduce/abandon features. These changes might be reflected
in the developers’ discussions. This analysis would also enable us
to investigate how the topics change and any possible relation be-
tween topic-wise post frequency and real-world dynamics, such as new
releases.

3.2.2. Approach
To compare the evolution of discussed topics we used two metrics,

topic popularity and topic absolute impact introduced in prior works [14].
These two metrics are applied on the data received from LDA. The
definition of the two metrics is presented below.

Let, (𝑧1, 𝑧2,… , 𝑧𝑘) is the set of topic probability vector and
𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡(𝑑𝑖) is the dominant topic of document. The dominant topic
𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡(𝑑𝑖) is defined as,

𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡(𝑑𝑖) = 𝑧𝑘 ∶ 𝜃(𝑑𝑖, 𝑧𝑘) = 𝑚𝑎𝑥(𝜃(𝑑𝑖, 𝑧𝑗)); 1 ≤ 𝑗 ≤ 𝐾 (3)

Now, the topic popularity for each topic 𝑧𝑘 in the dataset 𝑐𝑗 is defined
s,

𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦(𝑧𝑘, 𝑐𝑗) =
|{𝑑𝑖}|
|𝑐𝑗 |

; 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡(𝑑𝑖) = 𝑧𝑘; 1 ≤ 𝑗 ≤ 𝐾 (4)

and the absolute topic impact of a topic 𝑧𝑘 in month 𝑚 within corpus 𝑐
s defined as,

𝑚𝑝𝑎𝑐𝑡absolute(𝑧𝑘, 𝑚) =
∑

𝑑𝑖∈𝐷(𝑚)
𝜃(𝑑𝑖, 𝑧𝑘) (5)

here 𝐷(𝑚) is the set of posts in month 𝑚. The absolute topic impact
hows the absolute proportion of a particular topic in a particular
onth’s posts where the topic popularity presents the proportion of a
articular topic in the full dataset.

https://kodingen.com/
https://kodingen.com/
https://kodingen.com/
https://kodingen.com/
https://kodingen.com/
https://kodingen.com/
https://kodingen.com/
https://kodingen.com/
https://kodingen.com/
https://kodingen.com/
https://kodingen.com/
https://kodingen.com/

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.

3

l
v
&
d
d
c
b
t
v
O
T
t
t

Fig. 6. Topic absolute impact by the topic categories of Swift along with release of language version. Each release is a vertical grey dashed line.
Fig. 7. Topic absolute impact by the topic categories of Go along with release of language version. Each release is a vertical grey dashed line.
.2.3. Results
The topic popularity and absolute topic impact of each topic of each

anguage is presented in Figs. 6, 7, and 8 along with the releases of new
ersion. Both for Go and Rust, the topics related to the category ‘Data

Data Structure’ remain popular starting from the first day of their
iscussions in Stack Overflow till the last date of our analysis of the
ata. For the other language (Swift), however, the topics related to the
ategory ‘Application’ remained the most popular over time, followed
y the topics related to ‘UI’. Most Swift developers are interested in
he user interface topic. The finding is consistent with real-world obser-
ation because Swift is primarily used to create GUI-based software.
verall, for all topics of Swift, we are observing a downward trend.
he release frequency of Swift is comparatively lower than the other
wo languages. This indicates that Swift developers can have more
9

ime than the other languages to learn the specific features offered
in a given release. As such, if we normalize the number of questions
Swift developers asked per release, it is not surprising that the average
number of questions per release for Swift is less than the other two
languages. Moreover, in Section 4.2 we have shown that Swift language
achieved maturity on November 1, 2016. That means after that point,
most of the questions of the Swift are already answered. As most of the
questions are already answered in this way, they do not need to ask a
new question. As a result, the topic’s absolute impact is downward.

From the topic absolute impact of Go and Rust, the topics re-
lated to the ‘Library/SDK’ problem remain the second most discussed
throughout the entire timeline. The most commonly discussed library
for Rust was Cargo. In Rust ‘Parallelization’ also achieves the second
position along with library/SDK topic. There are two main reasons
for this. Cargo is Rust’s package manager. It is clear from the topic
absolute impact of Rust language that Rust developers struggle to

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.
Fig. 8. Topic absolute impact by the topic categories of Rust along with release of language version. Each release is a vertical grey dashed line.
1

2

use Cargo properly. Rust also does not have a specific guidance on
how to do concurrency. This is because Rust simply exposes standard
library operating system threads and block system calls like any generic
language. The discussions around mutex or parallel execution using
Rust in Stack Overflow show the opinions of different developers on
the issues and the best practices to handle parallelization in Rust.

We have anticipated that the release of a major version of the
languages may increase the discussion on certain topics. Thus we have
collected the release dates from the official website (for GO) and Github
repository (for Swift and Rust) and plotted the topic absolute impact
with the release of languages in Figs. 6, 7, and 8. From the figures,
we see spikes in the developers’ discussions around the release of new
version of the three languages at the beginning, i.e., when the three new
languages are relatively new to the developers. However, the intensity
of such spikes has subsided over time, as the new languages get old.

Finding 4: The absolute impact is almost constant in all
languages except Swift. In Swift, we have noticed a downward
trend in the topic absolute impact. On the other hand, the
release of a new version of a language does not result in any
significant change in the values of topic absolute impact of that
particular language as the language gets older.

4. Developers’ support to the three new languages

4.1. RQ3. How does the difficulty of the topics vary across the languages?

4.1.1. Motivation
A new language is likely to have some topics with new concepts.

Hence, programmers experienced in other languages may find those
difficult. Consequently, posts/queries on those topics are likely to have
less response from the community. Considering this, we plan to explore
those topics for our three languages of interest. The owners/sponsors
of these languages can enrich their documentation for these difficult
topics with priority. Language instructors will also get an idea of where
they should focus more.
10
4.1.2. Approach
To answer this question we collected two well-known [8,9] metrics

for all topics of Section 3.1 to measure difficulty.

. The percentage of posts of a topic without accepted answers (%
w/o accepted answers) In SO, if users think that an answer to a
query/post provides a solution to that problem, they can mark it
as accepted. For each topic, we have collected the average number
of accepted answers. Generally, a post is considered difficult if the
number of accepted answers is low [8,9].

. The median time in minutes for an answer to be accepted
(Median Time to Answer (Minutes.)). We have calculated the
median time to get an accepted answer. The more time it takes to get
an accepted answer for a post, the more difficult the post is [8,9].

4.1.3. Results
Tables 7, 8, and 9 shows the percentage of questions without an

accepted answer and median time (in minutes) to receive an acceptable
solution for each of the identified topics in Section 3.1. The topics in
Tables 7, 8, and 9 are grouped into categories and ordered inside the
group based on the percentage of posts without an accepted answer.

To understand the relationship between topic difficulty and popu-
larity, we have performed a correlation analysis. We have chosen the
Spearman correlation as it does not assume normality in the distribu-
tion of data. Table 10 shows the correlation. It is clear from Table 10
that the correlation between the popularity and difficulty metrics is
not statistically significant except for the Go language. It seems that
difficult topics are not that much popular among Go developers (see
Fig. 9).

Finding 5: Difficult topics are not that much popular among
Go developers.

4.2. RQ4. When were adequate resources available for the new program-
ming languages in Stack Overflow?

4.2.1. Motivation
The resources of a programming language, maturity and perfor-

mance of its libraries usually take time to be stable. In the meantime,

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.
Table 7
Per topic difficulty of Swift language.

Category Topic Posts w/o accepted (%) Median time (m)

Application

Testing 44.11 30
Sensor integration 46 32
Error handling 46.77 24
Cross platform tools 51.34 39
Request handling 59.56 82
Use of simulator 62.35 77

Data & Data structure
Type conversion 35.55 20
Portable database 44.11 32
Serialization 44.74 31

Library/SDK
Use of CoreSpotlight 49.71 54
SDK/Library integration 56.93 111
Foundation kit 58.6 63

Migration Migration 43.77 35

UI

Gesture recognition 49.06 38
UI constraints 49.34 37
Graphics 51.83 104
View controller lifecycle 52.34 39
User interface 52.64 36
Table 8
Per topic difficulty of Go language.
Category Topic Posts w/o accepted (%) Median time (m)

Application
Testing 35.23 41
Template rendering 37.17 45
Webserver 49.83 132

Build/Compilation Build/compilation error 45.14 69

Data & Data structure
Type conversion 28.4 24
Unmarshalling/Marshalling 37 47
Database and ORM 48.63 129

I/O I/O operation 35.68 50

Library/SDK Library integration error 40 50

Memory Memory handling 28.31 23

Migration Migration 33.59 77

Parallelism Go routine 39.11 48
Go channel 43.46 66
Table 9
Per topic difficulty of Rust language.
Category Topic Posts w/o accepted (%) Median time (m)

Data & Data structure

Generic coding 24.04 39
Mutability 24.22 37
Use of Trait 26.75 44
Borrow mechanism 26.97 41
Use of Struct 28.68 38

Library/SDK Cargo 36.76 83

Migration Migration problem 26.35 36

Parallelization Mutex 33.63 71
Parallel execution 34.2 80
Table 10
Correlation of topics popularity and difficulty.
Language Correlation Coeff./p-value Avg. Views Avg. Score Avg. Favourite

Swift % w/o accepted answers −0.515/0.029 −0.503/0.034 −0.401/0.099
Median time to answer (min.) −0.381/0.119 −0.244/0.33 −0.096/0.705

Go % w/o accepted answers −0.72/0.006 −0.764/0.002 −0.659/0.014
Median time to answer (min.) −0.476/0.1 −0.575/0.04 −0.448/0.124

Rust % w/o accepted answers −0.333/0.381 −0.383/0.308 −0.033/0.932
Median time to answer (min.) −0.517/0.154 −0.467/0.205 0.0/1.0
developers using that language are likely to discuss these in community
QA sites such as SO. In the RQ, we would like to inspect the length
time it takes for a language to get maturity by analysing its footprint in
SO.
11
4.2.2. Approach
It is hard to define ‘‘adequate resource’’ of a programming language

in a QA site. However, we can use an indirect approach to measure
adequate resources. Two major types of Stack Overflow questions are
repetitive questions and new questions. By repetitive question we mean

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.

t
t
d
O
F
‘
q

S
c
t
o
p
O
i
t
a
a
t
v
a
e
o
p
w
c
t
d
a
t
n
q
v

Fig. 9. Top six difficult topics of new languages.
he same question or same problem was discussed before, but then
he developers [15] faced it in another platform or environment. The
ecrease in the number of the new questions indicates that Stack
verflow already has the answer to most of the questions or problems.
rom this point of view, we can say that in Stack Overflow we have

‘adequate resource’’ of that particular language if the number of new
uestions is within a limit.

However, questions are not the only way developers interact with
tack Overflow. There are other ways like votes and comments. To
onsider all types of interactions into determining the expected time for
he availability of adequate resources, we have followed the approach
f Srba et al. [16]. Using this approach, we have calculated average
ost (by post we mean both question and answer) quality in Stack
verflow. To measure post quality, we need to consider all kinds of

nteractions within a given time frame. A deadline is needed to ensure
hat each post (both old and new) received equal time to receive votes
nd comments. Otherwise, old posts will get more time to get comments
nd votes than the new posts. In SO a post may receive a vote long after
he date it was created. For example, in our dataset, a post received a
ote from a user twelve years later. However, most votes, comments,
nd answers are available after a certain period. As stated by Bhat
t al. [17], 63.5% questions receive an answer within one hour, and
nly 9.98% questions receive an answer after one day. To calculate
ost quality from votes of answers, accepted answers and comments,
e have considered the votes received within thirteen days of the

reation of the post. We studied the distribution of the accepted answer
ime, answer time, and comment time. We found that the thirteenth
ay covers the 85 percentile of answer time, 95 percentile of accepted
nswer time, and 90 percentile of the comment time. We calculated
he post quality increasing the duration, but found that quality did
ot change significantly. The quality score represents the average post
uality over a month and interaction score represents the average de-
elopers’ interaction of that language. To calculate quality score, votes

from accepted answers are given double weight compared to those
without an accepted answer. This practice exists [18] to prioritize the
contribution of accepted answers. The detail calculation of quality score
and interaction score is presented below.
Let,
𝑄 = All questions of a month,
𝐴 = All answers of questions in 𝑄 where creation date is within 13 days
of 𝑄,
𝐶 = All comments of both 𝑄 and 𝐴 within 13 days of 𝐴,
𝑆 = All accepted answers of 𝑄 where creation date is withing 13 days
of 𝑄,
𝑇 (𝑥) = Creation time of item 𝑥.
12
Now,

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒 =

∑

𝑄𝑖∈𝑄 𝑄𝑖 +
∑

𝐴𝑖∈𝐴 𝐴𝑖 +
∑

𝐶𝑖∈𝐶 𝐶𝑖
∑

𝑄𝑖∈𝑄 𝑄𝑖
(6)

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =

∑

𝑄𝑖∈𝑄
∑

𝑄𝑣∈𝑉 𝑜𝑡𝑒𝑠 𝑜𝑓 𝑄𝑖
𝑇 (𝑄𝑣)≤𝑇 (𝑄𝑖)+13

𝑄𝑣

∑

𝑄𝑖∈𝑄 𝑄𝑖
+

∑

𝐴𝑖∈𝐴
∑

𝐴𝑣∈𝑉 𝑜𝑡𝑒𝑠 𝑜𝑓 𝐴𝑖
𝑇 (𝐴𝑣)≤𝑇 (𝐴𝑖)+13

𝐴𝑣

∑

𝑄𝑖∈𝑄 𝑄𝑖

+

∑

𝑆𝑖∈𝑆
∑

𝑆𝑣∈𝑉 𝑜𝑡𝑒𝑠 𝑜𝑓 𝑆𝑖
𝑇 (𝑆𝑣)≤𝑇 (𝑆𝑖)+13

𝑆𝑣

∑

𝑄𝑖∈𝑄 𝑄𝑖

(7)

4.2.3. Results
We plotted the quality score and interaction score of the three

languages in Figs. 10a and 10b, respectively. From Fig. 10a it is quite
clear that after the introduction of a language, post quality is unstable,
and the quality scores are very high. The obvious reason behind this
instability is that the language lacks resources, and every new release
triggers a set of new questions. The questions of the starting years are
less repetitive than the later years [16], and it is the reason behind
the high value of quality score. Gradually quality score stabilizes into
a certain point. In a stable language, users’ interaction with Stack
Overflow should be minimum and within a range. From Fig. 10b, it
is evident that after the first release, interaction score also stabilizes to
a point which supports our conjecture.

To effectively measure the difference of quality scores between
consecutive months, first difference metric [19] has been applied to the
quality score of each language. The first difference of quality score is
the difference of quality scores between two consecutive months. The
first difference technique removes any unobserved variable from data.
Moreover, as the data points are taken at a constant interval, the value
of the first difference works like a differential value of the quality score
function from where we can observe the change. The first difference is
plotted against the release time in Fig. 11. In the beginning, the first
difference of quality score was following the trend of release. However,
gradually it decreases the level of response which means the language is
stabilizing. We can detect a stable point for a language from this point
of view. By the stable point, we mean the starting date of the period
after the first release of a language when the language is so stable that
a single release cannot change or disrupt the development process.

If the first difference of quality score of a language is within a range,
then it has two implications. First, the language is stable and it does not
initiate any significant change in the development lifecycle. Secondly,
most of the Stack Overflow posts are repeating for this language and
the contribution of these kind of questions will be omitted in the first

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.
Fig. 10. Post quality and developers’ interaction with new languages vs. time.
1

2
3

Table 11
Stable point of the new languages.

Language Release date Stable point date

Go March 1, 2012 July 1, 2015
Swift September 9, 2014 November 1, 2016
Rust January 1, 2012 Not reached

difference process. Now, we have the effect of the change of frequency
of new questions in the first difference of quality score. Therefore,
the first difference of quality score within a range means developers
face fewer problems that are not already answered in Stack Overflow.
Hence, we can say at this point that the new languages have adequate
resources in Stack Overflow.

We defined the stable point as the time point after which the value
of the first difference is always between −1 and 1. Stable points for
each language are presented in Table 11

In Stack Overflow, the number of Rust developer is too low com-
pared to the other two languages. It is quite common in Stack Overflow
that a particular portion of developers leaves or becomes inactive in
Stack overflow after some time. The post quality of Rust will change
quickly after such departure. However, such departure cannot change
Go or Swift post quality so frequently as departing developers represent
a small percentage of the whole community of these languages in Stack
Overflow. We also observed that the Rust language’s release frequency
is relatively high compared to the other two languages. These can be
reasons why Rust has not reached the stable point yet.
13
Finding 6: In Stack Overflow, we can expect adequate re-
sources for Swift after two years of release, while this period
is three years for Go. We have found the evidence of having
an inadequate resource of Rust language in Stack Overflow.

Finding 7: The size of an active community can influence the
growth of a new language.

4.3. RQ5. Is there any relationship between the growth of the three pro-
gramming languages and developers’ activity patterns?

4.3.1. Motivation
Along with the QA sites such as Stack Overflow, repository like

GitHub presents the activities of the developers on that language. In
this research question, we would like to explore these two sources to
understand how language advancement is reflected in the developer
activities and engagements in both these platforms.

4.3.2. Approach
The most common developers’ activities in SO [20] are:

. Questions: Developers ask development-related questions. Ques-
tions might be moderated based on clarity and duplicity.

. Answers: Developers answer questions about their field of expertise.

. Comment: Users can comment on other users’ questions and an-
swers.

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.

4

5

6

7

1

Fig. 11. First difference of the post quality and release of a new version of new languages.
2

3

4

1

2

. Up Votes: Developers can vote to increase the score of other users’
questions or answers.

. Down Votes: Developers can cast votes to decrease the score of
other users’ questions or answers.

. Question View: Users can view other users’ questions. (SO does not
keep this count with a timestamp).

. Answer View: Users can view other users’ answers. (SO does not
keep this count with a timestamp).

High developers’ activity helps to expose special cases and rare bugs of
a project. Developers use the issue to inform the language owners about
these problems or a particular case. The solution to these problems and
bugs led to the growth of the language. Hence, we expect a relation-
ship between the issue and the developer’s activity pattern. Moreover,
developers’ activity can also be observed from the number of users and
repositories of that language from GitHub. Table 12 summarizes the
descriptions of and rationales behind the studied factors. To measure
the relationship among variables, we performed the following steps.

1. Model Construction (MC)
2. Model Analysis (MA)

These steps are discussed below.
Model construction (MC): We build a regression model to explain
the relationship between dependent and explanatory variables. The
regression model fits the dependent variable with respect to indepen-
dent variables. We followed the model construction approach of Harrel
et al. [21]. While relaxing the linearity assumption, this approach
models the nonlinear relationship accurately. The steps for model
construction are described below.

. Estimation of maximum degrees of freedom: A critical concern in model
building is overfitting. Overfitting is most frequent in models that
use more degree of freedom than the dataset can support. Hence,
we have fixed the maximum degree of freedom for our model. As
suggested by Harrel et al. [21], we have fixed 𝑛

15 degree of freedom
for our model, where n is the number of data points (120) in the
dataset.
14
. Normality adjustment: We fit our regression models using the Ordi-
nary Least Squares (OLS) technique. OLS assumes the normality in
the distribution of the dependent variable. Hence, it is crucial that
the distribution of the dependent variable is normal. A widely used
approach for conversion into a normal distribution is applying ln
function [22]. We have some zero value in our dataset. Therefore
in our case, we have used ln(𝑥 + 1) to lessen the skew and better fit
the OLS assumption.

. Correlation analysis: Before building the model, we checked the
highly correlated explanatory variables. In this step, we have used
Spearmen rank correlation as it is resilient to data that is not
normally distributed. We have constructed a hierarchical overview
of the correlation among explanatory variables. For sub-hierarchies
of explanatory variables with correlation 𝜌 >0.9, we selected only
one element of the sub-hierarchy.

. Fit regression Model: Finally, after selecting explanatory variables and
log transformations of dependent variables, we fit our regression
models to the data.

Model Analysis (MA): We have calculated the adjusted 𝑅2 to measure
the goodness of fit of the model. Adjusted 𝑅2 considers the bias of an
additional degree of freedom by penalizing the model for each degree
of freedom. The steps for model analysis are described below.

. Assessment of Model stability: Adjusted 𝑅2 may overestimate the
performance of the model for the curse of overfitting. The perfor-
mance estimation is taken into account by subtracting the average
optimism [23]. The optimism is calculated in three steps. First, a
bootstrap is created from N samples. Second, a model is fitted on the
bootstrap data using the same degree of freedom. Third, optimism,
the difference between the adjusted 𝑅2 of the bootstrap model and
the model built in the previous step(original model) is calculated.
The process is repeated for 1000 times, and we have got average
optimism. Finally, we subtracted the average optimism from the
original adjusted 𝑅2 and got optimism reduced 𝑅2.

. Estimation of the power of explanatory variables: To measure the
impact of an explanatory variable on a model, we measured the

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.
Table 12
The description and rationale for the factors used in the regression model.

Factor name Description Rationale

Factors based on the number of questions posted in Stack Overflow

Open issue count The number of open issue in the official
repository of that language

This factor reflects the
maturity of language

Closed issue count The number of closed issue in the
official repository of that language

This factor reflects the
maturity of language

Ratio of open issue The ratio of the open and closed issue
in the official repository

This factor reflects the agility
of the language project

Factors based on the number of open issue in GitHub

User count The number of new users of this
language on GitHub

This factor reflects the effect
of incomplete release over the
reputation of the language

Repository count The number of new repositories of this
language on GitHub

This factor reflects the effect
of incomplete release over the
developer base
(

(

(

Table 13
Coverage model statistics based on Stack Overflow.

Swift Go Rust

Adjusted 𝑅2 0.443 0.813 0.924
Optimism-reduced 𝑅2 0.441 0.802 0.919
Budgeted degree of freedom 8 8 8
Open issue 𝜒2 10* 53** 10*
Closed issue 𝜒2 59* 251** 716**
Ratio of open issue 𝜒2 10* 63** 21**

*𝑝 < 0.1.
**𝑝 < 0.001.

difference in performance between all explanatory variables (full
model) and all explanatory variables except one (dropped model).
A 𝜒2 test is applied to the resulting values to detect whether each
explanatory variable improves model performance to a statistically
significant degree. To estimate the impact, we performed the Wald
𝜒2 maximum likelihood test. The larger the Wald 𝜒2 value, the more
significant the impact of that particular explanatory variable is [24].

We can observe the relation between developers’ activity patterns
and advancement of the language project from two different perspec-
tives: (1) Question count of Stack Overflow and (2) Repository and User
count of that language from GitHub. Hence, we performed the process
of estimating the relationship for each perspective.

We have used open issue count, closed issue count, and the ratio of
open issue count with respect to the total number of the issue as the
explanatory variable and the question count as the dependent variable
to estimate the relationship between issue frequency and developers’
activity from Stack Overflow perspective. We collected 47 710, 23 967,
14 033 issue data for Rust, Go, and Swift language, respectively.

Developers use an issue to ask owners about a new feature and
seeking help with any problems. More developers may lead to a high
number of issues. Therefore, from the GitHub perspective, to model a
relationship between the issue and the developers’ activity, we have
used the User count and the Repository count of that language as the ex-
planatory variable and Open issue count as the dependent variable. We
have collected the number of repositories and users for each language.
To compute the number of new users for each language, we searched
for all the users whose account creation date is within a particular
month and whose major language is this language.

4.3.3. Results
According to our approach, results for the estimation of the rela-

tionship between the age of the language and the developers’ activity
from the perspective of Stack Overflow is presented below.

(MC-1) Estimation of the maximum degree of freedom: We have
120 points in our dataset. Hence, by Harrel et al. [21] we can allow
15

maximum 8 degrees of freedom.
MC-2) Normality adjustment: Question frequency of the new lan-
guages is right-skewed. So we have to perform log normality adjust-
ment in this case.

MC-3) Correlation analysis: We hierarchically clustered the features
by Spearmen ∣ 𝜌 ∣ value. It is found that the open issue ratio is highly
correlated with closed issue count. For the sake of completeness,
we have created a model using closed issue count instead of open
issue ratio and vice-versa but have not found any change in the
performance of the model.

MA-1) Assessment of model stability: Table 13 presents the adjusted
𝑅2 and optimism corrected 𝑅2. From Table 13, we can say that the
model is stable for Swift and Rust where the optimism (the difference
between Adjusted 𝑅2 and Optimism-reduced 𝑅2) is 0.002 and 0.005
respectively. However, for Go, the optimism is 0.011. Though the
difference is noteworthy, it does not invalidate our model.

(MA-2) Estimation of the power of explanatory variables: The high
𝜒2 value of the open issue and the ratio of the open issue to the
total number of issue in Table 13 represents the significant role
of these parameters in Stack Overflow. However, they are not that
much significant for determining the number of Swift and Rust
language questions in Stack Overflow. On the other hand, closed
issue ratio is significant for all three languages in determining the
number of questions in Stack Overflow which is proved by the high
𝜒2 value of closed issue in Table 13. Overall, the 𝜒2 value of Swift
language is relatively smaller than the other two languages. Hence,
we can say that the GitHub issue provides a meaningful and robust
amount of explanatory power in describing question frequency of
new languages except Swift.

It is quite clear from the adjusted 𝑅2 value of Table 13 that there is
a relationship between the growth of a language and the number of
questions posted. As seen from Table 13, the number of closed issues is
the most impactful explanatory variable for the Rust language model.
Hence, we can say that the number of open issues will significantly
influence the number of Rust question in Stack Overflow.

The relationship between the growth of a language and the devel-
opers’ activity from the perspective of GitHub is presented below.

(MC-1) Estimation of the maximum degree of freedom: To answer
this question we have used the same dataset used in the previous
step. Hence, we can allow a maximum of 8 degrees of freedom.

(MC-2) Normality adjustment: Like the previous step, we have ap-
plied a log transform to normalize the dependent variable (open
issue count).

(MC-3) Correlation analysis: We have used two features to build this
model. Hence, instead of hierarchical clustering, we just calculated
the Spearmen ∣ 𝜌 ∣ value between user count and repository count. It
is found that they are not correlated.

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.

A
t
o
r
G
c

v
b
i
(
i
a
O
t
o

a
i
O
t
a
m
i
R

i
f
r
e
t
o
M
u
o
t
r
r
i
s
o
a
t
t
f

Table 14
Coverage model statistics for relationship based on GitHub.

Swift Go Rust

Adjusted 𝑅2 0.755 0.907 0.862
Optimism-reduced 𝑅2 0.751 0.905 0.859
Budgeted degree of freedom 8 8 8
User 𝜒2 64* 215* 50*
Repository 𝜒2 289** 19** 192**

*𝑝 < 0.1.
**𝑝 < 0.001.

(MA-1) Assessment of model stability: Table 14 presents the adjusted
𝑅2 and optimism reduced 𝑅2. From Table 14 the optimism for each
language is <0.01 which ensures the stability of the model.

(MA-2) Estimation of the power of explanatory variables: The issue
is associated with the developers’ experience. Hence, we expect
the ‘User’ parameter to be an important feature in determining
the number of open issue in the official GitHub repository of new
languages. Table 14 shows a high 𝜒2 value of user count parameter,
which supports our conjecture about the significance of the number
of users in determining the number of open issue in GitHub. We
have also found that Rust has relatively fewer users in GitHub than
the other two languages which are expressed in the 𝜒2 value of
the ‘User’ parameter for Rust. The high 𝜒2 value of the repository
parameter for Swift and Rust language represents the significance
of the number of the repository in determining the number of
Swift and Rust open issue. However, the number of repositories is
less significant in determining the number of open issue in the Go
GitHub repository than the other two languages.

From the adjusted 𝑅2 value of Table 14, it is clear that there is a strong
relationship between developers’ GitHub activity and the number of
open issue in the official repository of that respective language.

Finding 8: There is a relationship between developers’ activity
pattern and the growth of the language.

Finding 9: The number of open issues of Rust in GitHub
significantly influenced the number of questions on Rust in
Stack Overflow.

Finding 10: The open issue count of Swift and Rust is highly
dependent on the number of repositories of those languages in
GitHub.

Every new release impacts the growth of a programming language.
fter a new release, the developers’ activity can give us an idea about

he relationship between developers’ activity pattern and the growth
f a language. To observe the developers’ activity pattern after a new
elease, we have collected all release dates of new languages from
itHub and then plotted them alongside question, issue, and repository
ount.

Each sub-figure shows the response after the release of a new
ersion. It is clear that the developers’ activity is influenced by the
enefits, features, and bugs of the new release. This trend is also visible
n question count, i.e., question count increases after each release
Fig. 12). However, we observed that the issue count of Swift is less
nfluenced than that of the other two languages. For tracking bugs
nd language problems, Go and Rust use only GitHub issue tracker.
n the other hand, besides using the GitHub issue tracker, Swift uses

heir own JIRA [25] instance for tracking bugs. This is a likely cause
16

f the difference, and as a result, the issue count of Swift represents
Table 15
Wilcoxon signed rank test result for the comparison of change between before and after
of a release.

Language Question p value Repository p value Issue p value

Swift 0.583 <0.01 0.6
Go 0.149 <0.01 0.433
Rust 0.473 <0.01 0.2

a portion of the actual issue (bugs), so it is less influenced by a new
release than the other two languages. We have tested this hypothesis
using statistical testing. We have performed Wilcoxon signed-rank test
between the question, repository, and issue count of the month before
release and the count of the month of release. The result is presented in
Table 15. However, only the change in repository count was significant.
The reason behind this significance is after each new release developers
create a new repository to test the new features without altering the
production version of the software. Hence, the number of repository
increases after a new release. Though we can observe that the question
and issue count are responding with the release of a new version, it
is statistically insignificant according to the Wilcoxon signed-rank test.
To find the reason behind this insignificance, we conducted a further
investigation. We noticed that the spikes in question and issue count
curve does not appear immediately after a release. Rather, it appears
after a variable time gap. Thus, the change in question and issue count
is statistically insignificant.

5. Implication

Thus far, we have discussed the characteristics of answer pattern
of new languages, the relation between the advancement of new lan-
guages and its developers’ activity, and expected answer interval for
new languages. In this section, we discuss the implications of our
findings. As well as helping developers find resources while learning
a new language, our study can also help language owners, researchers,
and Stack Overflow to refine their strategies to support the growth of
new languages.

Developers: In this study, we have estimated the answer interval
nd time when we can expect the availability of the adequate resource
n Stack Overflow. If the community support is still evolving in Stack
verflow, developers can decide to look into other resources. Some-

imes community projects developed and curated by developers can be
n alternative for traditional resources. For example, Rust was a com-
unity project of concerned developers. After strong positive feedback,

t was donated and has been part of official Rust documentation from
ust 1.25.
Language owners: Our study identifies the significant difference

n answer interval between two phases of new languages. As support
or the developers in the starting stages is likely to play a significant
ole in the overall acceptance of that language, owners should provide
xtensive support during that time. Another option for new languages
hat are currently in the design stage can be to use the community base
f some mature language by carefully selecting predecessor language.
oreover, new languages can fill the gap in supporting materials

sing developer-friendly documentation with a detailed example. We
bserved that the issue and release version influences developers’ ac-
ivity pattern (Tables 13, 14, Fig. 12). Though it is not possible to
elease a bug-free version, extra care must be taken for a bug-free
elease and solution of issues in GitHub. A good portion of questions
n Stack Overflow seeks clarification of the documentation. Owners
hould take extra care to prepare documentation suitable for developers
f all levels. We have also found that migration is a common topic
mong all the new languages. As there are many mature languages in
he same domain before the arrival of new languages it is assumed
hat a huge number of new language projects are migrated projects
rom some other language. To facilitate developers’ efforts, language

https://Golang.org/project/
https://Golang.org/project/
https://github.com/Rust-lang/Rust/blob/master/CONTRIBUTING.md
https://github.com/Rust-lang/Rust/blob/master/CONTRIBUTING.md
https://github.com/Rust-lang/Rust/blob/master/CONTRIBUTING.md
https://github.com/Rust-lang/Rust/blob/master/CONTRIBUTING.md
https://Swift.org/contributing/#reporting-bugs
https://Swift.org/contributing/#reporting-bugs
https://Swift.org/contributing/#reporting-bugs
https://Swift.org/contributing/#reporting-bugs
https://Swift.org/contributing/#reporting-bugs
https://bugreport.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/
https://bugreport.apple.com/

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.
Fig. 12. Release of a new version and developer activity pattern per languages.
owners should provide detailed documentation of migration steps from
common sources.

Stack Overflow: Small community size can disrupt the growth of
a language. Our study found that the new languages have a small
number of experts or active developers in Stack Overflow. To support
the growth of a language which has a few expert developers, Stack
Overflow should refine their strategy. According to the current policy,
the stack overflow focuses on the expert developers. However, to sup-
port new languages, they should encourage developers from all levels to
answer questions. It supports the findings of Srba et al. [16] where they
suggested Stack Overflow replace the current question-oriented policy
with an answer-oriented policy.

Researchers: We have found that migration is the hardest topic in
two of the three new languages in terms of posts without an accepted
answer. Furthermore, it is a common topic in all of the three languages.
As migration problems are too user-specific further research may be
conducted on how a generalized solution can be designed to solve
user-specific issues. The data and data structure category are common
and one of the top two categories in all the languages in terms of the
number of posts. It gives the researchers a direction of an impactful
and broad research area. Our study finds that the library/SDK category
is a common discussion topic among new language developers. Also,
this category contains one of the top three difficult topics in all three
languages. We have observed that developers often face difficulties
integrating libraries or setting up communication between SDKs’. A
standard protocol for SDK communication may help developers to
overcome such difficulties.

6. Threats to validity

In this section, we discuss the validity of our study.
Internal validity: Use of tags to categorize questions by language

is an internal threat to validity. A new Stack Overflow user may not
add an appropriate tag with the question. However, Stack Overflow
questions go through an extensive moderation process, and eventually,
it will have the appropriate tags. In some cases, our identification of
posts by tags may not capture the posts of new languages. To alleviate
this threat, we considered the relevance of tags. In this study, we
have used Stack Overflow as the primary dataset. There are many
17
language-specific developers’ forums and QA sites, and those sites may
contain posts that can help to understand the growth of new languages.
However, we believe that numerous participants and the widespread
popularity of Stack Overflow have made it a familiar venue for devel-
opers. Hence, the posts of Stack Overflow are considered enough to
understand the trends of the growth of a new language.

We conducted this study with the Stack Overflow (SO) dump of
January 2018, which was the latest dump available during our analysis.
Our analysis presents the types of discussions and support developers
offer in SO regarding the three new programming languages Go, Swift,
and Rust. While these three languages are new compared to languages
like Java and C#, we note that we found at least three years of data
for each language (Go, Swift, Rust) in SO in our dump of January
2018. Such a large volume of data can provide us considerable insights
into the research questions we explored in our paper. However, the
data dump is a little bit old, and replicating this study on a newer
dataset may lead to different results. Like any language, over time, a
new language is no longer considered new. This can be true for the
above three new languages if they are studied for a longer period. Given
that our focus was to understand how these three new languages are
discussed and supported, our analysis and results from January 2018
across the three languages are well-suited to accommodate the analysis
of newness/freshness of the three languages.

External validity: After the inception of the Stack Overflow (2008),
about 35 programming languages have been released [6], whereas this
study is focused on three languages (Swift, Go, and Rust). For this
reason, our research results may not apply to other new languages.
However, in this study, we did not emphasize any specific feature of
a particular language. The languages we considered vary in terms of
their time of inception and other properties (such as having predecessor
language or not). Instead, we focused on the characteristics and trends
of the growth of new languages. We compared the growth trends
with a top-tier (Java) and mid-tier (Python) language and found that
mid-tier language (Python) shows similar characteristics that confirm
the generalizability of the findings. The dissimilarity with the top-tier
language (Java) is that we missed the community interaction at the
initial period of this language. Java was published a long time ago
and was already a developed language before the establishment of SO.
Therefore, we think our findings are free from any bias in a particular
language.

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.
7. Related works

There have been many works on Stack Overflow data, analysing
the developers’ discussion topics. Barua et al. [26] have investigated
the question ‘‘What are the developers asking?’’. Rosen and Shihab [8],
Bajaj et al. [27], Wan et al. [14] did similar work focusing on mobile
developers, web developers, and blockchain developers, respectively.

In a study on big data developers, Bagherzadeh et al. [9] have
identified no statistically significant correlation between big data top-
ics’ popularity and difficulty. To reach this conclusion, they used LDA
to identify big data topics and then calculated the topics’ popularity
and difficulty. However, in a similar study on concurrency developers,
Ahmed et al. [10] have found a negative correlation between difficulty
and topics’ popularity.

Abdellatif et al. [28] conducted a study on chatbot developers to
identify challenging chatbot development issues. For this study, they
extracted posts from stack overflows related to chatbot development.
They found that the maturity level of the chatbot community is still
lower than other SE fields. One of their suggestions for facilitating
chatbot developers’ efforts is the improvement of the documentation of
the chatbot platform and documentation for integration with popular
third parties.

Hart and Sharma [29] had suggested to consider user reputation, the
social reputation of the answerer, and post length to judge post quality.

Reboucas et al. [30] have compared the data from Stack Overflow
with opinions of 12 Swift developers to answer three research questions
- common problems faced by Swift developers, problems faced by
developers in the usage of ‘optionals’, and error handling in Swift. They
used Latent Dirichlet Allocation (LDA) to identify the topics from Stack
Overflow questions and then cross-checked the findings by interviewing
Swift developers. These are different from our research questions.

Zagalsky et al. [31] have analysed the R language using data from
both Stack Overflow and R-help mailing list. They focused on the par-
ticipation pattern of users in the two communities. They collected users’
information in both sites and later mining on their activities (questions,
answers). They tried to answer how communities create, share, and
curates knowledge. Vasilescu et al. [32] have compared popularity and
user activity level between StackOverflow and R-help mailing list. They
followed a similar approach to Zagalsky et al. [31] by identifying active
users in both communities. They have some interesting findings on
the decreasing popularity of the mailing list and the influence of the
reputation system in Stack Overflow. Their work is mainly focused on
identifying the user behaviour of these communities.

Vasilescu et al. [33] have conducted a study to find associations
between software development and crowdsourced knowledge. They
have found that the Stack Overflow activity rate correlates with the
code changing activity in GitHub. One of their interesting findings
is active GitHub committers ask fewer questions, but provided more
answers than others.

In a study on developers’ behaviour, Xiong et al. [34] have linked
developers’ activity across GitHub and Stack Overflow. They have
shown that active issue committers are also active in asking questions.
Moreover, for most developers, their contents on GitHub are similar to
their questions and answers in the Stack Overflow.

Tausczik et al. [15] measured the effect of crowd size on Stack-
Exchange question quality. They have found that among question
audience size, contributor audience size, and topic audience size, con-
tributor audience size has a higher effect on solution quality. They have
classified the problems into three problems: error problems, how to
problems, and conceptual problems. Error problems are very specific,
and as a result, no matter how much the audience size is, 25% problems
are never solved. A large audience provides a diverse solution which
is critical for how to problems. Conceptual problems are trickier and
rarely solved with a small audience.

Srba et al. [16] had discussed the reason behind the increasing
18

failure and churn rate of Stack Overflow. In their work, criticizing the
existing automatic deletion and classification of posts, they introduced
a new reputation system. They also suggested to follow answer oriented
approach instead of the current asker-oriented approach. Instead of
focusing on highly expert users, Stack Overflow should engage users
of all levels.

8. Conclusion

In this study, we have analysed the reflection of the growth of new
languages on Stack Overflow, i.e., how the activity pattern of Stack
Overflow users changes along with the growth of the resources of the
language and the expected time of availability of adequate resources. In
the early stages of new programming languages, documentation is not
very rich, and it is likely to be enriched with time. We have found that
documentation of the language is one of the major topics about which
developers talk about. The impact of the quality of documentation on
the growth of new languages can be a new avenue for future work.
We have also demonstrated a relationship between the growth of the
three programming languages and developers’ activity patterns using
data from both Stack Overflow and GitHub. We have found that an
active community can influence languages’ growth and pinpointed the
timeline after which language achieved enough resources for develop-
ers in QA sites. We believe our findings can help not only developers
but also language owners and Stack Overflow to support the growth of
new languages.

CRediT authorship contribution statement

Partha Chakraborty: Conceptualization, Data curation, Formal
analysis, Investigation, Methodology, Project administration, Resources,
Software, Validation, Roles/Writing - original draft, Writing - review
& editing. Rifat Shahriyar: Conceptualization, Data curation, For-
mal analysis, Investigation, Methodology, Project administration, Re-
sources, Software, Validation, Roles/Writing - original draft, Writing
- review & editing. Anindya Iqbal: Conceptualization, Data curation,
Formal analysis, Investigation, Methodology, Project administration,
Resources, Software, Validation, Roles/Writing - original draft, Writing
- review & editing. Gias Uddin: Conceptualization, Data curation,
Formal analysis, Investigation, Methodology, Project administration,
Resources, Software, Validation, Roles/Writing - original draft, Writing
- review & editing.

Declaration of competing interest

No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict
with this work. For full disclosure statements refer to https://doi.org/
10.1016/j.infsof.2021.106603.

References

[1] J. Maloney, M. Resnick, N. Rusk, B. Silverman, E. Eastmond, The scratch
programming language and environment, ACM Trans. Comput. Educ. 10 (4)
(2010) 1–15.

[2] B.C. Pierce, Types and Programming Languages, first ed., The MIT Press, 2002.
[3] K.E. Kushida, J. Murray, J. Zysman, Cloud computing: From scarcity to

abundance, J. Ind. Compet. Trade 15 (1) (2015) 5–19.
[4] T.F. Bissyande, D. Lo, L. Jiang, L. Reveillere, J. Klein, Y.L. Traon, Got issues?

Who cares about it? A large scale investigation of issue trackers from github,
in: 2013 IEEE 24th International Symposium on Software Reliability Engineering
(ISSRE), IEEE, 2013.

[5] P. Chakraborty, R. Shahriyar, A. Iqbal, Empirical analysis of the growth and
challenges of new programming languages, in: 2019 IEEE 43rd Annual Computer
Software and Applications Conference (COMPSAC), IEEE, 2019.

[6] Wikipedia contributors, Timeline of programming languages, 2019, https:
//en.wikipedia.org/wiki/Timeline_of_programming_languages [Online; accessed
12-December-2019].

[7] Stackoverflow, Stackoverflow survey 2019, 2019, https://insights.stackoverflow.

com/survey/2019/ [Online; accessed 12-December-2019].

https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
https://doi.org/10.1016/j.infsof.2021.106603
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb1
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb1
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb1
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb1
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb1
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb2
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb3
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb3
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb3
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb4
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb4
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb4
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb4
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb4
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb4
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb4
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb5
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb5
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb5
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb5
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb5
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://en.wikipedia.org/wiki/Timeline_of_programming_languages
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/
https://insights.stackoverflow.com/survey/2019/

Information and Software Technology 137 (2021) 106603P. Chakraborty et al.
[8] C. Rosen, E. Shihab, What are mobile developers asking about? A large scale
study using stack overflow, Empir. Softw. Eng. 21 (3) (2015) 1192–1223.

[9] M. Bagherzadeh, R. Khatchadourian, Going big: a large-scale study on what big
data developers ask, in: Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering - ESEC/FSE 2019, ACM Press, 2019.

[10] S. Ahmed, M. Bagherzadeh, What do concurrency developers ask about?, in:
Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ACM, 2018.

[11] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent Dirichlet allocation, J. Mach. Learn. Res.
3 (2003) 993–1022.

[12] S. Nadi, S. Krüger, M. Mezini, E. Bodden, Jumping through hoops, in: Proceed-
ings of the 38th International Conference on Software Engineering - ICSE ’16,
ACM Press, 2016.

[13] S. Syed, M. Spruit, Full-text or abstract? Examining topic coherence scores
using latent Dirichlet allocation, in: 2017 IEEE International Conference on Data
Science and Advanced Analytics (DSAA), IEEE, 2017.

[14] Z. Wan, X. Xia, A.E. Hassan, What is discussed about blockchain? A case study
on the use of balanced LDA and the reference architecture of a domain to
capture online discussions about blockchain platforms across the stack exchange
communities, IEEE Trans. Softw. Eng. (2019) 1.

[15] Y.R. Tausczik, P. Wang, J. Choi, Which size matters? Effects of crowd size on
solution quality in big data Q&A communities, In: Proceedings of the Eleventh
International Conference on Web and Social Media, ICWSM 2017, Montréal,
Québec, Canada, May 15-18, 2017, 2017, pp. 260–269.

[16] I. Srba, M. Bielikova, Why is stack overflow failing? Preserving sustainability in
community question answering, IEEE Softw. 33 (4) (2016) 80–89.

[17] V. Bhat, A. Gokhale, R. Jadhav, J. Pudipeddi, L. Akoglu, Min(e)d your tags:
Analysis of question response time in stackoverflow, in: 2014 IEEE/ACM In-
ternational Conference on Advances in Social Networks Analysis and Mining
(ASONAM 2014), IEEE, 2014.

[18] D. Romano, M. Pinzger, Towards a weighted voting system for q a sites, in: 2013
IEEE International Conference on Software Maintenance, IEEE, 2013.

[19] F. Rasheed, M. Alshalalfa, R. Alhajj, Efficient periodicity mining in time series
databases using suffix trees, IEEE Trans. Knowl. Data Eng. 23 (1) (2011) 79–94.

[20] A.S. Badashian, A. Esteki, A. Gholipour, A. Hindle, E. Stroulia, Involvement,
contribution and influence in github and stack overflow, in: Proceedings of 24th
Annual International Conference on Computer Science and Software Engineering,
in: CASCON ’14, IBM Corp., USA, 2014, pp. 19–33.

[21] F.E. Harrell, Regression Modeling Strategies, Springer International Publishing,
2015.
19
[22] C. Feng, H. Wang, N. Lu, T. Chen, H. He, Y. Lu, X.M. Tu, Log-transformation
and its implications for data analysis, Shanghai Arch. Psychiatr. 26 (2) (2014)
105–109.

[23] B. Efron, How biased is the apparent error rate of a prediction rule?, J. Amer.
Statist. Assoc. 81 (394) (1986) 461–470.

[24] S. McIntosh, Y. Kamei, B. Adams, A.E. Hassan, An empirical study of the impact
of modern code review practices on software quality, Empir. Softw. Eng. 21 (5)
(2015) 2146–2189.

[25] Wikipedia contributors, JIRA, 2018, https://en.wikipedia.org/wiki/Jira(software)
[Online; accessed 07-October-2018].

[26] A. Barua, S.W. Thomas, A.E. Hassan, What are developers talking about? An
analysis of topics and trends in stack overflow, Empir. Softw. Eng. 19 (3) (2012)
619–654.

[27] K. Bajaj, K. Pattabiraman, A. Mesbah, Mining questions asked by web developers,
in: Proceedings of the 11th Working Conference on Mining Software Repositories
- MSR 2014, ACM Press, 2014.

[28] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, E. Shihab, Challenges in
chatbot development, in: Proceedings of the 17th International Conference on
Mining Software Repositories, ACM, 2020.

[29] K. Hart, A. Sarma, Perceptions of answer quality in an online technical question
and answer forum, in: Proceedings of the 7th International Workshop on
Cooperative and Human Aspects of Software Engineering - CHASE 2014, ACM
Press, 2014.

[30] M. Reboucas, G. Pinto, F. Ebert, W. Torres, A. Serebrenik, F. Castor, An empirical
study on the usage of the swift programming language, in: 2016 IEEE 23rd
International Conference on Software Analysis, Evolution, and Reengineering
(SANER), IEEE, 2016.

[31] A. Zagalsky, C.G. Teshima, D.M. German, M.-A. Storey, G. Poo-Caamaño, How
the r community creates and curates knowledge, in: Proceedings of the 13th
International Workshop on Mining Software Repositories - MSR 16, ACM Press,
2016.

[32] B. Vasilescu, A. Serebrenik, P. Devanbu, V. Filkov, How social q&a sites
are changing knowledge sharing in open source software communities, in:
Proceedings of the 17th ACM Conference on Computer Supported Cooperative
Work & Social Computing - CSCW14, ACM Press, 2014.

[33] B. Vasilescu, V. Filkov, A. Serebrenik, Stackoverflow and github: Associa-
tions between software development and crowdsourced knowledge, in: 2013
International Conference on Social Computing, IEEE, 2013.

[34] Y. Xiong, Z. Meng, B. Shen, W. Yin, Mining developer behavior across github and
stackoverflow, in: Proceedings of the 29th International Conference on Software
Engineering and Knowledge Engineering, KSI Research Inc. and Knowledge
Systems Institute Graduate School, 2017.

http://refhub.elsevier.com/S0950-5849(21)00081-1/sb8
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb8
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb8
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb9
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb9
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb9
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb9
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb9
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb9
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb9
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb10
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb10
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb10
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb10
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb10
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb11
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb11
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb11
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb12
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb12
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb12
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb12
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb12
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb13
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb14
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb14
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb14
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb14
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb14
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb14
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb14
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb16
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb16
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb16
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb17
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb17
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb17
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb17
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb17
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb17
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb17
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb18
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb18
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb18
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb19
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb19
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb19
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb20
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb20
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb20
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb20
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb20
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb20
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb20
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb21
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb21
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb21
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb22
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb22
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb22
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb22
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb22
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb23
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb23
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb23
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb24
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb24
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb24
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb24
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb24
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
https://en.wikipedia.org/wiki/Jira(software)
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb26
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb26
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb26
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb26
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb26
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb27
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb27
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb27
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb27
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb27
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb28
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb28
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb28
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb28
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb28
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb29
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb29
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb29
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb29
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb29
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb29
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb29
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb30
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb30
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb30
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb30
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb30
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb30
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb30
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb31
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb31
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb31
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb31
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb31
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb31
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb31
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb32
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb32
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb32
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb32
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb32
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb32
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb32
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb33
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb33
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb33
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb33
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb33
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb34
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb34
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb34
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb34
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb34
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb34
http://refhub.elsevier.com/S0950-5849(21)00081-1/sb34

	How do developers discuss and support new programming languages in technical Q&A site? An empirical study of Go, Swift, and Rust in Stack Overflow
	Introduction
	Background and data collection
	Stack Overflow QA site
	New programming languages discussions in Stack Overflow
	Data collection
	Download Stack Overflow dataset
	Develop tag set
	Extract posts of new languages
	Preprocess new language post set
	Model and label new language topics
	Calculate topic absolute impact
	Calculate topic popularity & difficulty
	Calculate quality score and interaction score
	Data extraction from Github & model developer activity

	Developers' discussions about the three new languages
	RQ1. What are the topics of discussions related to Swift, Go, and Rust?
	Motivation
	Approach
	Result
	Swift Topics
	Go Topics
	Rust Topics

	RQ2. How do the discussed topics evolve over time?
	Motivation
	Approach
	Results

	Developers' support to the three new languages
	RQ3. How does the difficulty of the topics vary across the languages?
	Motivation
	Approach
	Results

	RQ4. When were adequate resources available for the new programming languages in Stack Overflow?
	Motivation
	Approach
	Results

	RQ5. Is there any relationship between the growth of the three programming languages and developers' activity patterns?
	Motivation
	Approach
	Results

	Implication
	Threats to validity
	Related works
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	References

