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Abstract

We present CrossSum, a large-scale cross-
lingual abstractive summarization dataset com-
prising 1.7 million article-summary samples in
1500+ language pairs. We create CrossSum
by aligning identical articles written in differ-
ent languages via cross-lingual retrieval from
a multilingual summarization dataset. We pro-
pose a multi-stage data sampling algorithm to
effectively train a cross-lingual summarization
model capable of summarizing an article in
any target language. We also propose LaSE,
a new metric for automatically evaluating
model-generated summaries and showing a
strong correlation with ROUGE. Performance
on ROUGE and LaSE indicate that pretrained
models fine-tuned on CrossSum consistently
outperform baseline models, even when the
source and target language pairs are linguisti-
cally distant. To the best of our knowledge,
CrossSum is the largest cross-lingual summa-
rization dataset and the first-ever that does not
rely solely on English as the pivot language.
We are releasing the dataset, alignment and
training scripts, and the models to spur future
research on cross-lingual abstractive summa-
rization. The resources can be found at https:
//github.com/csebuetnlp/CrossSum.

1 Introduction

Cross-lingual summarization is the task of generat-
ing a summary in a target language given a source
text in another language. The task is challenging
as it combines summarization and translation in
one task, both challenging tasks in their own right.
Earlier approaches to cross-lingual summarization
thus employed pipeline methods like translate-then-
summarize (Leuski et al., 2003) or summarize-then-
translate (Wan et al., 2010). Not only computa-
tionally expensive, having to use multiple models,
these approaches also suffer from error-propagation
(Zhu et al., 2019) from one model to another, de-
grading the overall performance.

Input Article: [...] FE OO0 7 1)L AU L RAGEEED
BREDMREH T HAMIREDERKREBRO—BLLT,

hEEniz. ( was tested as part of
a global clinical trial to test the effectiveness of various exist-
ing therapies against the new coronavirus.) [...] ZD#ER. A
THREEZENEETHEELREDBILELEITHY, (Asa
result, the case fatality rate of critically ill patients who
require a ventilator is reduced by 30%.) [...] RUR T3>V
REMRIETAFIARZRORBSLOVERIZEDL., (British
Prime Minister Boris Johnson welcomed "the great achieve-
ments of the British scientific community".) [..] TLA®HTH
(& HFRPTFITABET] ("And this is a medicine available
all over the world".) [...] L& TZWVWRFOA1 REITEo 7z (but
a very cheap steroid that has been used for a long time.)

Summary: el e T AV 8 FZTETSy
a5 g4 FEERACT wFod TYF @NWI QA TH FACO
SR FACA | (Scientists say a cheap and readily available drug
called will help save the lives of critically il
patients with coronavirus.)

Figure 1: A sample article-summary pair from Cross-
Sum, the article is written in Japanese and the summary
is in Bengali. We translate the texts in English for better
understanding. Word and phrases of the article relevant
to the summary are color-coded.

The success of sequence-to-sequence (seq2seq)
models (Cho et al., 2014; Sutskever et al., 2014)
and the advances in Transformer-based models
(Vaswani et al., 2017; Rothe et al., 2020) have
aided in the emergence of end-to-end methods that
can produce cross-lingual summaries with one sin-
gle model (Zhu et al., 2019). The availability of
cross-lingual summarization datasets (Ladhak et al.,
2020; Perez-Beltrachini and Lapata, 2021) has also
helped this task gain popularity in recent times.
However, these datasets cover only a few languages,
have few samples for training and evaluation, or
use English as the pivot language (i.e., the target
language always remains English), thereby limiting
the applicability to a great extent.

To democratize cross-lingual summarization be-
yond high-resource languages, in this work, we in-
troduce CrossSum, a large-scale cross-lingual ab-
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Source Languages

Figure 2: A bubble plot depicting the article-summary statistics of the CrossSum dataset. The radii of the bubbles
are proportional to the number of article-summary pairs for the corresponding language pair. Languages in the
axes are sorted by the number of their Wikipedia entries to show a sequential contrast from high- to low-resource
languages. We consider a language pair as low-resource in CrossSum if the number of samples is below 500,
mid-resource for 500 to less than 5000, and high-resource for pairs exceeding 5000.

stractive summarization dataset containing 1.7 mil-
lion article-summary samples in 1500+ language
pairs by aligning identical articles written in differ-
ent languages via cross-lingual retrieval from the
multilingual XL-Sum (Hasan et al., 2021) dataset
covering 45 languages. We design a multistage
sampling algorithm for successful training of mul-
tilingual models that can generate a summary in
any target language for a source article in any lan-
guage (i.e., a many-to-many summarization model).
We also propose LaSE, an automatic metric for
evaluating cross-lingual summaries when reference

summaries in the target language may not be avail-
able (but available in another language), potentially
opening new doors to evaluate low-resource lan-
guage pairs. We also show a strong correlation
between ROUGE and LaSE, validating the relia-
bility of LaSE. For the very first time, we perform
cross-lingual summarization on a broad and diverse
set of languages without relying on English as the
standalone pivot language, consistently outperform-
ing several many-to-one and one-to-many models,
as well as summarize-then-translate baselines.

To the best of our knowledge, CrossSum is the



first publicly available cross-lingual summarization
dataset for a large number of language pairs. We
are releasing the dataset, alignment and training
scripts, and models hoping that these resources will
encourage the community to push the boundaries
of cross-lingual abstractive summarization beyond
the English and other high-resource languages.

2 The CrossSum Dataset

The idea of curating a cross-lingual summarization
dataset is to pair the source text of an article A with
the summary of another identical article B written
in a different language and vice-versa, with the
availability of a multilingual dataset where differ-
ent languages have identical contents. Language-
agnostic sentence representations (Artetxe and
Schwenk, 2019a; Feng et al., 2022) have achieved
state-of-the-art results in cross-lingual text mining
(Zweigenbaum et al., 2017; Artetxe and Schwenk,
2019b), and therefore, provide a way to search
identical contents across languages.

Two contemporary works have compiled large-
scale multilingual summarization datasets, namely
XL-Sum (Hasan et al., 2021) (1.35M samples in 45
languages) and MassiveSumm (Varab and Schluter,
2021) (28.8M samples in 92 languages). Though
substantially larger than the other, MassiveSumm is
not publicly available. Since public availability is
crucial for promoting open research, we opted for
the other alternative, XL-Sum, which is distributed
under a non-commercial research license. XL-Sum
has another benefit: all articles are crawled from
a single source, BBC News. We observed that
BBC publishes similar news contents in different
languages and follow similar summarization strate-
gies; hence it would increase the quality and quan-
tity of the mined article-summary pairs.

For simplicity, we perform the similarity search
over summaries only. To ensure maximum quality,
we set two strong prerequisites for a summary S 4
in language A to be paired with another summary
Sp of language B:

1. Sp must be the nearest neighbor of .S 4 among

all summaries in B, and vice-versa.

2. The similarity between S4 and Sp must be

above the threshold, 7.

To measure similarity, we use the inner prod-
ucts of Language-agnostic BERT Sentence Rep-
resentation (LaBSE) (Feng et al., 2022) (a unit
vector for an input text sequence). We set the mini-
mum similarity threshold as the average threshold

(t = 0.7437) of all languages that maximized re-
spective F} score for LaBSE in the BUCC mining
tasks (Zweigenbaum et al., 2017).!

Induced Pairs We noticed that many summaries,
despite being nearest neighbors, were filtered out
because of the threshold, although interestingly,
both were matched with the exact same summary in
a different language. To accommodate these pairs
into CrossSum, we introduce ‘induced pairs.” For-
mally, two summaries S4, Sp in languages A, B
are induced pairs if they are nearest neighbors of
one another in A, B, their similarity score is below
7, and both are matched with S¢ in language C as
valid pairs (S4, Sg), (S, Sc) (or through a chain
of matched pairs in other languages).

We observed that induced pairs are prevalent if
their languages are distant or low-resource. LaBSE
uses contrastive learning (Guo et al., 2018; Yang
et al., 2019) to rank parallel sentences over non-
parallels. Since parallel pairs are mostly found for
high-resource and linguistically close languages,
we hypothesize that LaBSE fails to assign high
similarity to sentences from languages that are not.
We thus try to incorporate the induced pairs into
CrossSum through a simple graph-based algorithm:

We represent all summaries as vertices in a graph
and draw edges between two vertices if the sum-
maries are matched as valid pairs. Then we find the
connected components in the graph and draw edges
(i.e., induced pairs) between all vertices in a com-
ponent. Again to ensure quality, before computing
the induced pairs, we use the max-flow min-cut
theorem (Dantzig and Fulkerson, 1955) consider-
ing the similarity scores as edge weights to limit
the size of each component to 50 vertices (since
ideally a component should have at most 45 ver-
tices, one summary from each language) and set
the minimum threshold to 7/ = (7 — 0.10).

We finally assembled the original matched pairs
and induced pairs to create the CrossSum dataset.
Figure 2 shows the article-summary statistics for
all language pairs in CrossSum.

Implicit Leakage We initially made the train-
dev-test splits respecting the original XL-Sum split:
and performed an initial assessment of the dataset
using the splits by training a many-to-one model

'Around 90% F} score is achieved using LaBSE in the
BUCKC tasks, hence it is expected that not all alignment will
be correct in CrossSum. Since Hasan et al. (2021) reported
summaries around this percentage to be good-quality in XL-
Sum, we went ahead with this threshold.
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Figure 3: Training on the dataset respecting the original XL-Sum splits causes absurdly high ROUGE scores
(marked red) in many-to-one models due to implicit data leakage. Therefore, we split taking the issue into account
and consequently, models trained on the new set (marked blue) does not exhibit any unusual spike in ROUGE-2.

(articles written in any source language being sum-
marized into one target language) in a supervised
fashion. Upon evaluating the model, we found
very high ROUGE-2 scores (up to 60) for many
language pairs, even reaching as high as 80 for
some (Figure 3). For contrast, Hasan et al. (2021)
reported ROUGE-2 in the 10-20 range in the multi-
lingual summarization task.

We inspected the model outputs and found that
many summaries were exactly the same as the ref-
erences. Through closer inspection, we found that
all the articles, the summaries of which are ex-
act copies of references, had their identical coun-
terparts in some other language occurring in the
training set. During training, the models were suc-
cessfully able to align the representations of iden-
tical articles (albeit written in different languages)
and were able to generate the exact same output
by memorizing from the training sample. While
models should undoubtedly be credited for being
able to make these cross-lingual mappings, this is
not ideal for benchmarking purposes as this creates
unusually high ROUGE scores. We denote this
phenomenon as ‘implicit leakage’ and make a new
dataset split to avoid this. Before proceeding, we
deduplicate the XL-Sum? dataset using semantic
similarity, considering two summaries S, .S’; in
language A to be duplicates if their LaBSE rep-
resentations have similarity above 0.95. We take
advantage of the component graph mentioned pre-
viously to handle the leakage and assign all article-
summary pairs originating from a single compo-
nent in the training (dev/test) set of CrossSum, cre-
ating an even 80%-10%-10% split for all language
pairs. Since identical articles no longer appear in
the train set of one language and dev/test set of
another, the leakage is not observed anymore (Fig-

2XL-Sum is deduplicated using lexical overlap methods
only. But due to the risk of implicit leakage, which is not
lexical, we further perform semantic deduplication.

ure 3). We further validated this by inspecting the
model outputs and found no exact copies.

3 Training & Evaluation Methodologies

In this section, we discuss the multistage sampling
strategy for training cross-lingual text generation
models and our proposed metric for evaluating
model-generated summaries.

3.1 Multistage Language Sampling

From Figure 2, we can see that CrossSum is heav-
ily imbalanced in terms of samples for different
language pairs, and thus training directly without
upsampling low-resource languages may result in
their degraded performance. Conneau et al. (2020)
used a probability smoothing technique for upsam-
pling in multilingual pretraining and sampled all
data points of a batch from one language. However,
if we did the same for the language pairs in Cross-
Sum, many batches would have duplicate samples
since many pairs do not have enough examples, and
at the same time, many would not be sampled dur-
ing training for lack of enough training steps (due
to a limitation of computational resources from our
side). To address this, we adapt their algorithm to
introduce a multistage upsampling method and en-
sure either the source or the target texts of a batch
are sampled from the same language.

Let Ly, Lo, -- -, L, be the languages of a cross-
lingual source-target dataset. Let c¢;; be the number
of training samples where the source is from L;
and target from L ;. We compute the probabilities
of the source languages by

n
_ Dk Cik
bi = n n ]
Zj:l > k=1 Cjk
We then use an exponent smoothing factor o and
normalize the probabilities
Qi = -
(2 n
2= b

Vie{1,2,--- ,n}

Vie{1,2,---,n}



Given the source language L;, we now compute
the probabilities of its target languages.
Cij .
pzivje 1’2’...7n
i 22:1 Cin { }
We again smooth p;|; by a factor of 3 and obtain
the normalized probabilities
B
P
Jli .
—Vje{l,2,--- ,n}
B ) ) )
2 k-1 Pyi
We analogously compute p; and p;); and, using
them, describe the training algorithm with multi-
stage sampling in Algorithm 1.
Note that the proposed algorithm can be applied
to any cross-lingual seq2seq task where both the
source and target languages are imbalanced.

4l =

3.2 Evaluating Summaries Across Languages

A sufficient number of reference samples are essen-
tial for the reliable evaluation of model-generated
summaries. However, for many CrossSum lan-
guage pairs, especially low-resource ones, even the
training sets are very small, let alone their test sets.
Being able to evaluate using reference summaries
written in a different language would allow evalua-
tion in a broad range of languages, especially for
which there are inadequate references in the tar-
get language. Embedding-based similarity metrics
(Zhang et al., 2020; Zhao et al., 2019) have gained
popularity in the last few years. We draw inspira-
tion from them and design a similarity metric that
does not rely on the lexical overlap between the
generated and reference texts. As a result, this new
metric can effectively measure similarity across
languages in a language-independent manner. We
consider three essential factors for our metric:

1. Meaning Similarity: The generated summary
and the reference summary should convey the same
meaning irrespective of their language. Just like
our alignment procedure from Section 2, we use
LaBSE to compute the meaning similarity between
the generated (sgep,) and reference summary (s,¢y):

MS(8gen, Sref) = emb(sgen).emb(sref)T,

where, emb(s) denotes the embedding vector out-
put of LaBSE for input text s.

2. Language Confidence: The metric should iden-
tify, with high confidence, that the summary is
indeed being generated in the target language. As
such, we use the fastText language-ID classifier
(Joulin et al., 2017) to obtain the language proba-
bility distribution of the generated summary and

Algorithm 1: A pseudocode of the multi-
stage sampling algorithm.

Input: D;; Vi,j € {1,2,--- ,n}: training
data with source/target languages
LZ'/L]';
Cij < |D”|VZ,] € {1, 2, R ,n};
m: number of mini-batches.
1 Compute p;, pj, pjji, Pi|j USINg Cij
2 while (Model Not Coverged) do

3 batch < ¢

4 Sample r ~ Unif(0,1)

5 if » > 0.5 then

6 Sample L; ~ p;

7 for i < 1tomdo

8 Sample L; ~ pj;

9 Create mini-batch mb from D;;
10 batch < batch U {mb}

1 end

12 end

13 else

14 Sample L; ~ p;

15 for j < 1tomdo

16 Sample L; ~ p;);

17 Create mini-batch mb from D;;
18 batch < batch U {mb}

19 end

20 end
21 Optimize model using batch
22 end

define the Language Confidence (LC) as:

1,if Lyor = P(Leor
LC(Sgen, Sref) :{ 51 § = argmax (Lgen)

P(Lgen = Lyey), otherwise
3. Length Penalty: Generated summaries should
not be unnecessarily long, and the metric should
penalize long summaries. While model-based met-
rics may indicate how similar a generated summary
is to its reference and its language, it is not clear
how they can be used to determine its brevity. As
such, we adapt the BLEU (Papineni et al., 2002)
brevity penalty to measure the length penalty of
generated summaries:

L if [Sgen| < |sref| + ¢

‘sgen‘

LP(Sgenysref) = {
exp(l — e
ref|TC

), otherwise
The languages of sy, and s,.; may not be

the same, and identical texts may vary in length

across languages. Hence, we used a length offset ¢



to avoid penalizing generated summaries slightly
longer than the references. By examining the stan-
dard deviation of mean summary lengths of the
languages, we set ¢ = 6.

We finally define our metric, Language-agnostic
Summary Evaluation (LaSE) score as follows.

LaSE(Sgen, STef) = MS(SgE’ru Sref)
X LC(Sgen, Sref) X LP(Sgena Sref) (1)

4 Experiments & Benchmarks

We aim to train one model to generate summaries
in any target language for an input article from an-
other language by providing explicit cross-lingual
supervision. Fine-tuning pretrained language mod-
els (Devlin et al., 2019; Xue et al., 2021) have
shown state-of-the-art results on monolingual and
multilingual abstractive text summarization (Rothe
et al., 2020; Hasan et al., 2021). Many pretrained
multilingual generative models are currently avail-
able, some prominent ones being mBART (Liu
et al., 2020), CRISS (Tran et al., 2020), mT5 (Xue
et al., 2021). Though CRISS is pretrained with a
cross-lingual objective, which better suits our use
case, in contrast to the multilingual objective of
mBART and mT5, we choose mT5 for fine-tuning
because of its broad coverage of 101 languages
with support for 41 languages from CrossSum.

We compare our proposed multistage many-to-
many (m2m) model with the standard unistage
m2m model as well as many-to-one (m20) and one-
to-many (02m) models, standards for cross-lingual
summarization. We train four different m20 and
02m models using four highly spoken and typo-
logically diverse pivot languages: English, Hindi,
Arabic, and Russian. As another baseline, we use a
summarize-then-translate pipeline. First, we fine-
tune mT5 on our proposed split of the in-language
data to obtain a multilingual summarization model.
Then we use the M2M-100 model (Fan et al., 2021)
(418M parameters variant) to translate the sum-
maries into the target language.

We fine-tune mT5-base with the multistage al-
gorithm with batch size 256, mini-batch size 32
on CrossSum (together with the in-language sam-
ples) with o = 0.5, 5 = 0.75. The unistage m2m
model is sampled with o = 0.25, and each batch is
packed with 8 mini-batches, each sample of which
being taken from one language pair. m20 and 02m
models are also trained in the same manner. All
models are trained for 25k steps on 8 Nvidia Tesla

Target ROUGE-2 vs. LaSE-in-lang vs.
Lang. LaSE-in-lang. LaSE-out-lang.
Pearson/Spearman Pearson/Spearman
English 0.923/0.821 0.931/0.929
Hindi 0.967/1.000 0.940/0.600
Arabic 0.963/1.000 0.924/1.000
Russian 0.477/0.489 0.024/0.257

Table 1: Correlation analysis of ROUGE-2 and LaSE
for different target languages.

P100 GPUs for 3 days. We discard a language
pair from training if it has fewer than 30 training
samples to prevent too many duplicates in a mini-
batch. We limit the input to 512 and output to 84
tokens and use language-specific BOS (beginning
of sequence) tokens (Wu et al., 2016) for guiding
the decoder to generate summaries in the intended
target language during inference and use a length
penalty of 0.6. We show the evaluation results
using ROUGE-2 and LaSE in Figure 4 and 5. Re-
sults indicate that the m2m model trained with our
proposed algorithm consistently outperforms the
unistage sampling model, the m2o0 and 02m models,
and the summarize-then-translate pipeline.

S5 Analysis & Discussions

Zero-shot/few-shot cross-lingual transfer: Ex-
periments are done in Section 4 in fully supervised
fashion. However, for many low-resource language
pairs, samples are not available. Hence, it is attrac-
tive to be able to perform zero-shot cross-lingual
transfer without relying on any labeled examples.
To this end, we fine-tune mT5 with the in-language
(both source and target are in the same language)
samples only in a multilingual fashion and, during
inference, vary the target language. Unfortunately,
the model fails at generating cross-lingual sum-
maries and performs in-language summarization
instead. We also fine-tune m2o0 models in a zero-
shot setting (with only the in-language samples of
the target language). Here, the model can generate
non-trivial summaries but still lags behind fully su-
pervised models (results in the Appendix). We do
not perform any few-shot experiments and leave
them as potential future directions.

How reliable is LaSE?  To validate the reliability
of LaSE, we show its correlation with ROUGE-2.
To further posit that LaSE is language-agnostic and
can be effectively evaluated with references in a
different language from the target, we swap the
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Figure 4: ROUGE-2 and LaSE scores for English and Hindi as target pivots as the sources languages vary. Scores
indicate that our many-to-many (m2m) model with multistage sampling significantly outperforms the one-to-many
models, summarize-then-translate and unistage m2m baselines models on most languages. The comparisons with
other pivots are shown in the appendix due to space restrictions.

reference texts with the references in the language
of the source text and show the correlation between
the two variants of LaSE. We present the Pearson
and Spearman correlation coefficients in Table 1.
Since we were concerned that data scarcity would
question the reliability of evaluation, we only take
those language pairs into account that have at least
500 test samples.Results show that there is a high
correlation between ROUGE-2 and LaSE for En-
glish, Hindi, and Arabic, and moderate for Russian.
On the other hand, we find a strong correlation
even when the references are swapped for the three
above-mentioned languages. However, for Russian,
we observed little to no correlation. We wish to
investigate this discrepancy in the future and find
ways to mitigate this.

6 Related Works

Pipeline-based methods were popular at the be-
ginning stages of cross-lingual summarization re-
search (Leuski et al., 2003; Orasan and Chiorean,
2008; Wan et al., 2010), breaking it into two se-
quential summarization and translation tasks. The
lack of large datasets was a major obstruction to-
wards end-to-end methods. End-to-end methods
that performed cross-lingual summarization with a
single model gained popularity with the emergence
of neural models. Using a synthetic dataset, Zhu
et al. (2019); Cao et al. (2020) performed cross-
lingual summarization with a dual Transformer ar-
chitecture in a multitask framework, while Bai et al.
(2021) propose a single encoder-decoder for better
transfer across tasks. Until recently, cross-lingual
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Figure 5: ROUGE-2 and LaSE scores for English and Hindi as source pivots as the target languages vary. Scores

indicate that our many-to-many (m2m) model with multi

stage sampling significantly outperforms the one-to-many

models, summarize-then-translate and unistage m2m baselines models on most languages. The comparisons with
other pivots are shown in the appendix due to space restrictions.

summarization was limited to English-Chinese pair
only due to the lack of benchmark datasets. To pro-
mote the task beyond them, Ladhak et al. (2020)
introduced Wikilingua, a large-scale many-to-one
dataset with English as the pivot language, while
Perez-Beltrachini and Lapata (2021) introduced
XWikis, containing 4 European languages in 12
many-to-many directions.

7 Conclusion & Future Works

In this paper, we present CrossSum, a large-scale,
non-English-centric cross-lingual abstractive sum-
marization dataset containing 1.7 million samples
across 1500+ language pairs. CrossSum provides
the first publicly available cross-lingual summa-
rization dataset and benchmarks for many of these

pairs. We also make the alignment scripts available
for the researchers, which will help produce bet-
ter alignments. Furthermore, we introduced a new
multistage sampling algorithm that can be gener-
alized to any cross-lingual generation task and a
new language-agnostic metric for evaluating cross-
lingual summaries when references in the target
languages may not be available. Additionally, we
demonstrate that training one multilingual model
can help better cross-lingual summarization than
baselines. Moreover, CrossSum can also be helpful
in zero-shot cross-lingual settings.

In the future, we will investigate the use of our
dataset for other summarization tasks, e.g., multi-
document (Fabbri et al., 2019) and multi-modal
summarization (Zhu et al., 2018).
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Figure 6: ROUGE-2 and LaSE scores for Arabic and Russian as target pivots as the sources languages vary. Scores
indicate that our many-to-many (m2m) model with multistage sampling significantly outperforms the one-to-many
models, summarize-then-translate and unistage m2m baselines models on most languages. The comparisons with
other pivots are shown in the appendix due to space restrictions.
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Figure 7: ROUGE-2 and LaSE scores for Arabic and Russian as source pivots as the target languages vary. Scores
indicate that our many-to-many (m2m) model with multistage sampling significantly outperforms the one-to-many
models, summarize-then-translate and unistage m2m baselines models on most languages. The comparisons with
other pivots are shown in the appendix due to space restrictions.
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Figure 8: Zero-shot ROUGE-2 scores for the pivot languages as the target languages vary. The zero-shot models are
trained with only the in-language samples of the pivot. Though the results are clearly behind the fully supervised
model, the model is able to generate non-trivial summaries for many language pairs.
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Figure 9: Zero-shot LaSE scores for the pivot languages as the target languages vary. The zero-shot models are
trained with only the in-language samples of the pivot. Though the results are clearly behind the fully supervised
model, the model is able to generate non-trivial summaries for many language pairs.
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