A Comparative Performance Analysis of PHP with and
without JVM

Abstract: The field of programming language is evolving rapidly.New technology and the burgeoning demand
of several application platforms is behind the amelioration of programming languages.Variation in the imple-
mentations and applications of programming languages demands the performance measure attribute among
them.JPHP , which is simply PHP on the Java VM , was introduced to address the discrepancy of Zend PHP.It’s
rich features includes JIT, Multi-Threading, Unicode, GUI, Android and Embedded Web Applications.It claims
it’s high performance 1x - 10x faster than PHP 5.6,PHP 7 because of JIT and Optimizer.Having a new, elegant
and powerful API with better standard library, The PHP language can be used not only for web apps but also
for GUI, Game, Android.In this report,we have run a comparative study of the performance analysis of JPHP
with traditional PHP that runs on server.For this purpose we have explored a few existing benchmarks and in
particular, we have found that JPHP is faster than traditional JPHP , as claimed.

Additional Key Words and Phrases: JVM, Bytecode, JPHP,Zend,Benchmark
ACM Reference Format:

1 INTRODUCTION

Benchmark is a standard or point of reference against which things may be compared or as-
sessed.Using benchmark for measuring the performance of any programming languages is a
common practice. For a long course of time, PHP is considered as a pragmatic language for server
side programming. It was created to fulfill specific needs for quickly making web pages (the name
originally stood for Personal Home Pages) and the language was extended as required.The authors
of PHP did not intend PHP to become a new programming language, but it grew with time. Features
like correct handling of foreign characters / Unicode characters are obviously added on afterwards
and not cleanly integrated with the rest of the language Despite having proper specification until
nowi,it is extremely popular for it’s easiness but also criticized for it’s bad design.

JVM is the main component of Java architecture and it is the part of the JRE (Java Runtime
Enviroment). It provides the cross platform functionality to java.Any code written to target the
JVM will run on any platform where JVM is available. In most cases, compilers produce code for
a particular system but Java compiler produces code for a virtual machine .Thus, JVM provides
security to java.

Dmitriy Zayceff, who is a Russian, is the main developer of JPHP. According to author[12] of
JPHP , JPHP is not a replacement for the Zend PHP engine or Facebook HHVM. We don’t plan to
implement the zend runtime libraries (e.g. Curl, PRCE, etc.) for JPHP. Their project started in October
2013.HHVM’s idea is to compile PHP as an intermediate bytecode and then compile the bytecode
into x64 machine code via JIT.

2017. XXXX-XXXX/2017/9-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2

The main reasons for initiating the project were as follows:

e It was an experiment.

e Using java libraries in PHP.

e Upgrading performance via JIT and JVM

e Replace the inconsistent and ugly Zend PHP runtime with something more decent.
o Allow to write on PHP not only under the Web

e Implement Unicode support and multithreading.

JPHP is quite rich in features, which include :

e PHP 5.6+ (some language features from PHP 7).

e JIT (~ 2.5 faster PHP 5.6, ~1.1 faster PHP 7), Optimizer

e Using java libraries and classes in PHP code.

e Unicode for strings (UTF-16, like in Java)

e Threading, Sockets, Environment architecture (like sandbox objects in the runkit zend exten-
sion).

e GUI (Swing or JavaFX)

e Embedded cache system for classes and functions

e Optional Hot Reloading for classes and functions

JPHP has own elegant standard library with many classes and functions for all.

In the later sections of the report we have covered the following things. In Section 2 we have
discussed the motivation of our work for better understanding of this paper easily. Methodol-
ogy,approach adopted is conferred in Section 3 and Section 4 has the full details of topics discussed
in Section 3.In section 5 our design and implementation procedure of our work,experimental setup
environment and findings from the work is narrated elaborately. Section 6 summarizes our findings
and future works in this respect. Section 7 concludes the report.

2 MOTIVATION

The basic approaches to implement a programming languages include building VM from scratch
or using existing VM. Following the later approach various JVM languages have been designed
such as - JRuby and Jython etc[10]. PHP implementations on JVM have been around earlier like
Quercus,p8,projectzero .The authors of the project, Quercus, stated that their implementation works
at the same speed as Zend PHP + APC. Up to a certain time, there were other PHP implementations
for JVM ,but previous ones have fizzled out in favour of the Zend Engine. Another PHP compiler for
JVM has born recently: JPHP[12].JPHP compiles PHP sources to JVM bytecode and then can execute
the result on the JVM. It doesn’t have libararies like PDO , CURL but it enables us to write familiar
PHP language syntax for creating applications that run on the JVM, along with the facility to use
Java libraries and classes in the PHP code as well as executing it . In one of the features of JPHP
includes, it is faster than both PHP 7, and PHP 5.6 .Their website did mention some performance
benchmarks , but no proper documents were available to support their claim. So, We decided to
evaluate both PHP with and without JVM .Our intend is to test both setup and see the performance
whether it support their claim or not.

3 METHODOLOGY

JPHP is quite a new JVM Language. It has it’s own website [2] as well as own news twitter [4].
In1, we can see the performance comparison posted by the Author of JPHP.

To evaluate JPHP with PHP, we tried to find if any analysis is done on this topic. The github
repo of JPHP[12] does refer to some performance benchmarks , but the benchmarks result wasn’t

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

JPHP vs PHP benchmark 1:3

* 1000 = 1 second

Fig. 1. JPHP vs PHP benchmark[3]

available. We did get access to a set of benchmarks,which were used to test performance of
JPHP.A performance analysis of JPHP vs PHP 7 can be found here along with environments and
results [7],which is inspired from JPHP provided benchmark with source.We also found hnw’s
diary[5],Where Zend Benchmarks[8] were used for performance Analysis.This analysis includes
PHP 5.6, PHP 7 ,Phalanger,Quercus and JPHP.Hawana didn’t just analyze the performance , he also
wanted to contribute to the project by making several pull requests.

After taking a tour to existing benchmark testing , we are motivated to analyze PHP and JPHP
on our own. For this to happen , we wanted to create a Benchmark set- which combines existing
benchmarks as well as our implemented benchmark.For inspiration to implement our benchmark ,
we explore some of PHP benchmarks,which includes Maettig’s collection of benchmarks[6],The
PHP benchmark[1] . We also viewed the article of Christian Vigh[9], which discussed about the
evolution of PHP over 21 years. This article also included a comparison of pure CPU benchmark
results among PHP versions.

To start a new project we followed the instructions given in [2], in Getting started page. To collect
a test project , we were needed to install a build tool Gradle in our PC.

4 DIFFERENT TECHNIQUES & OPTIMIZATION

The entire language of JPHP is written from scratch in Java using the ASM library to generate
bytecode, it is used by all popular JVM languages, for example Groovy. Gradle was chosen as the
assembly system.

The questions arises,Why JPHP doesn’t support many functions and classes from original Zend
PHP? Answer to this question comprises several reasons, that are stated as follows:

e Zend PHP classes and functions are poorly designed.

e It’s one of the project goals - replacing the ugly zend runtime library with a better runtime
library.

e To implement this support, it’s necessary to spend a lot of time and effort.

e Many PHP functions are too universal and complex to implement them.

The Java Virtual Machine (JVM) is quite a powerful tool. How the JVM bytecode works can be
found from the documentation for the ASM library. The capabilities of the VM can be described
briefly as follows:

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:4

e Virtual stacking machine.

e It is possible to store local variables by indexes (something like registers).

e GC (garbage collector) implemented at the VM level .

e Objects and classes implemented at the level VM .

o A large number of standard operations - POP, PUSH, DUP, INVOKE, JMP, etc.

e For Try Catch there are bytecode instructions, for finally - partially .

e For VM there are several types of values: int32, int64, float, double, objects, arrays of scalars,
arrays of objects, for bool, short, byte, char int32 is used.

The Java technology stack provides very convenient conditions for writing a JVM language.
We do not need to write our VM with JIT, the garbage collector and the class system are already
implemented, the head does not have any problems with cross-platform, and the bytecode JVM
itself is very easy to understand. JIT allowed to increase productivity by 1-10 times, depending on
the tests, on average 1.5-3 times on real code.

The main problem with PHP performance is the global space for variables, the magic of variables,
just magic when you can access a variable by name at runtime. For this reason, JPHP can compile
the same code in different ways. Whereas the truth is, there is no magic with variables, the compiler
just converts variables into indices and at runtime will immediately access them by index.

For the sake of getting idea about different benchmarks,we explored JPHP[7],which is perfor-
mance test(PHP 7 vs JPHP) using the official JPHP benchmark.Here they have used Java version
"1.8.0_92" and PHP version 7.0.6. The result is as given below:

e PHP7: CLI test: 11.1s

e PHP7: Apache test: 11.3s

e jPHP: java client test: 16s
e jPHP: java server test: 13s

Further in this work, in the diary of HNW [5] ,we found PHP source code benchmark test
included Zend bench[8] run by the author.

PHP 7 PHP 5.6 Phalanger Quercus JPHP

simple 0.094 0.112 0.069 0.195

simplecall 0.028 0.116 0.013 0.179

simpleucall 0.054 0.112 0.021 0.212 0.06e1
simpleudcall 0.053 0.116 0.021 0.229 0.075
mandel 2 0.347 0.356 0.584 0.769

ackermann (7) 0.078 0.140 0.044 0.264 0.132
ary (50000) 0.008 0.023 0.025 0.097 0.073
ary2 (50000) 08 0.019 0.017 0.044 0.049
ary 3 (2000) 136 0.152 0.338 0.394 0.138
fibo (30) 0.181 0.374 151 0.609 0.183
hash 1 (50000) 17 0.029 0.116 0.114 0.077
hash 2 (500) 17 0.035 0.073 0.062 0.105
heapsort (20000) 67 0.092 0.116 0.310 0.216
matrix (20) 69 0.086 0.136 0.164 0.100
nestedloop (12) 0.156 0.199 0.115 0.256

sieve (30) 41 0.089 0.114 0.151 0.089
strcat (200000) 10 0.013 0.013 0.041 0.033
Total 1.363 2.061 1.069 4.089 1.787

Fig. 2. Run 1

Although JPHP was slower than PHP 7, it was equal to or slightly faster than PHP 5.6 / Phalanger
here in the 2. This is because it includes time to compile Java bytecode and JIT compilation . In
case of the operation on the Web server , such processing can be done in advance. For measuring

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

JPHP vs PHP benchmark 1:5

the true ability, the author called the benchmark function twice and measured only the second
execution time Saw.

PHP 7 PHP 5.6 Phalanger Quercus JPHP

simple 0.090 0.109 0.061 0.128 026
simplecall 0.027 0.117 0.018 0.125
simpleucall 0.050 0.115 0.019 0.170 0.051
simpleudcall 0.052 0.113 0.019 0.235 0.036
mandel 2 0.336 0.336 0.575 0.770
ackermann (7) 0.074 0.133 0.041 0.208 0.113
ary (50000) 0.008 0.020 0.018 0.015 0.022
ary2 (50000) 0.006 0.018 0.020 0.020 0.033
ary 3 (2000) 0.112 0.165 0.332 0.362 0.156
fibo (30) 0.179 0.349 0.147 0.524 0.185
hash 1 (50000) 0.017 0.030 0.116 0.034 0.035
hash 2 (500) 0.016 0.033 0.066 0.047 0.038
heapsort (20000) 0.067 0.087 0.105 0.180 0.116
matrix (20) 0.069 0.083 0.127 0.131
nestedloop (12) 0.158 0.190 0.108 0.244
sieve (30) 0.040 0.088 0.106 0.111
strcat (200000) 0.010 0.013 0.012 0.018
Total 1.309 2.000 1.891 3.321 1.213
Fig. 3. Run2

Here, 3 in the second run,the code is already pre-compiled and as expected JPHP wins. It was
the best result when JPHP looked at the total of all the tests.

In [6], some micro benchmarks were also explored . The author created this comparison to learn
something about PHP and how the PHP compiler works.These benchmarks are advised not to use
in comparison of PHP versions.

PHPBench.com[1] was constructed as a way to open people’s eyes to the fact that not every PHP
code snippet will run at the same speed.

The purpose of article [9], is to learn how performance improved across the latest PHP versions
starting from PHP 5 up to the latest developments, including the recent version 7.1 with opcache
optimization, as well as the experimental JIT branch that will be become part of PHP 8 or PHP 7.2
the next version. The experimental JIT branch mentioned in the article is JPHP,when the article
was written it was still experimental. The author of JPHP also contributed to clarify and review
information presented in this article, so it is clear and accurate.

The get-started project, downloaded from [2], has this directory structure-

Get-Started

tbuild.gradle
src

tBootstrap. php
JPHP-INF/

t .bootstrap.php
launcher.conf
We can any php code in the JPHP-INF/.bootstrap.php Such as

<?php echo "Hello World";

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:6

After manually configuring buld.gradle, we need to use the command line to run your app :
Gradle run

5 EXPERIMENT DESIGN AND PERFORMANCE ANALYSIS

This section presents the experimental design that we used to evaluate JPHP and PHP.

Experimental Setup

We use the following experimental methodology.

Benchmarks. We draw 25 benchmarks -which combines the Zend Benchmark[8], JPHP benchmarks([7],
own inspired benchmarks.
The benchmark consists of:

e Fibonacci -simple fibonacci function with recursion.

e Loops -it’s general language features like " for, foreach, while "

e Conditions - it’s general language features like "if, else,elseif, switch-case, ".

e Math - testing performance of math operators and functions.

e Constants - performance of getting simple constants and class constants.

e Type hinting - performance of calling methods and functions with type hinting.

e New object - performance of creating new instances of classes.

e Arrays - performance of arrays, adding, foreach-ing, creating, etc.

e Strings - performance of string operations and basic functions.

e Object property - performance of getting/setting object properties.

e Closures - performance of closures.

e Func call - performance of calling functions.

e Method call - performance of calling dynamic and static methods.

e Design Patterns - performance of singleton,

e getter + setter - getter and setter in a class

e Ackerman - the simplest example of a well-defined total function where its value grows
rapidly, even for small inputs.

e EmptyString -performance of all ways of checking if a string is empty

e Encryption - performance of Caeser and Vigenere Encryption

e Matrix - simple matrix operations

e NBody -Nbody simulation

e Prime - check a number is prime

e Quicksort - PHP implementation of popular sorting algorithm, in worst,best and average case

e Regex - Utilizing the regular expression evaluation in PHP and JPHP

e Array Searching - Binary and linear search

e Mandal - Mandal’s second law

We omit two Mandal bench from our analysis as it was causing the script to hang, but keeping it
in benchmark class for completeness.Among the benchmarks we found Ackerman and Encryption
to contribute most in total runtime, due to it’s complex nature.

Hardware and Operating System. We use three hardware platforms:

(1) Processor Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz, 2400 MHZ, 2 Core(s), 4 Logical
Processor(s)

(2) Processor Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz, 3201 MHZ, 4 Core(s), 4 Logical Proces-
sor(s)

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

JPHP vs PHP benchmark 1:7

(3) Processor Intel(R) Core(TM) i5-4200M CPU @ 2.50GHz, 2501 Mhz, 2 Core(s), 4 Logical
Processor(s)

We used Windows 10 Pro distribution and a 64-bit (x86 64) in all platforms .

Gradle. For this project,We downloaded and installed the Gradle distributive.Gradle is simply a
distribution plugin. It is a build tool which replaces XML based build scripts with an internal DSL
which is based on Groovy programming language The Launcher in Gradle uses a special class
loader to load all the classes from the src directory.The Java class file contains Java bytecode (highly
optimized set of instructions) which is executed by Java Virtual Machine (JVM).The class loader in
Gradle loads any PHP files in the src directory automatically and this class files are converted into
bytecode which is run by JVM.

Other Experiment Setup. We have used xampp as apache server. We have run these scripts
against PHP 7.1and PHP 5.6. We run the bench code several times, and took the minimum time.
IntelliJ IDEA is used as IDE for bulding Gradle Project, which we have downloaded from [2] as a
starting point of our experiment.

The java and PHP verisons of each platform are given below-

(1) For Platform 1 a.k.a PC1

Bl CAWINDOWS\system32\cmd.exe - o x

) 111-b14)
111-b14, mixer

Fig. 4. Java configuration of PC1
We have run 2 Apache Servers in PC1. Their configurations are -

(2) For PC2

r using XAMPP for Windows.

Fig. 8. PHP 7.1in PC2

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:8

(3) For PC3

C \““El“\“SER PC>java —verszion
.a_4a

—h26 >
lJava HotSpot{TH> 64-Bit Seluel UM <huild 25.40- b25. mixed mode>

icrosoft Windows [Uersion 6.3.96001]
(c)> 2013 Microsoft Corporation. All rights reserved.

:\Users\USER PC>php -v
c ul

Fig. 10. PHP 7.1in PC3

Performance Analysis

This section analyses the results of our experiment.Our sole purpose of this experimentation was
to achieve first-hand experience to witness the effectiveness of JVM. With this in mind ,we have
designed our benchmark which consists of both complex and simple procedures.

In this experiment, To get the results simultaneously,we have executed a "bat’ file which consists
of simple loop for executing a script multiple times. Script outputs were written into a file . After
several executions, We can estimate the total runtime of the bench codes. The number of iterations
inside each bench code also effect the run time - as input size increases, the execution time also
rises. To achieve the effective output we have kept the number of iterations moderate.

Table 1 shows the execution time of each benchmark as well as the total time which is measured
in seconds. In PC1, more than one PHP servers were used for two versions of PHP (PHP 7.1 and PHP
5.6) and JPHP beats them both.Other two platforms also follow these results.These results indicate
that our experiment model was well-designed and well-thought, And for this we are getting faster
execution in JPHP.In all platforms we can observe that, the claim that JIT (~ 2.5 faster than PHP
5.6, ~ 1.1 faster than PHP 7) in JPHP is true .But if we look at the individual benchmarks, and not
the summed benchmark,then PHP7 seems to be quicker in a lot of important scenarios (method
calls, object creation...) ; and has better feature support. From [5] , we already know that there is
some start up delay in the first run of JPHP beacuse of JVM.So, to keep the comparison simple we
have avoided the result of first time run of JPHP code.

‘ ‘ Benchmarks ‘ PHP 7.1(ms) ‘ JPHP(ms) ‘ PHP 5.6(ms) ‘
| | Fibonacci (25) | 26 | 16 | 66 |
| | Prime number (100) | 1880 | 1298 | 2987 |
| | Ackermann Function(3,3) | 1893 | 2143 | 5453 |
\ | Loop (1000) | 444 | 251 | 780 |
| | Math Methods (100) | 4370 | 8368 | 10405 |
‘ ‘ Empty String Check (25) ‘ 11 ‘ 31 ‘ 39 ‘
| | Control Structure (100) | 279 | 79 | 500 |
| | String Manipulation (25) | 1174 | 389 | 1170 |
‘ ‘ Array Search(linear,binary)(10) ‘ 60 ‘ 124 ‘ 175 ‘

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

JPHP vs PHP benchmark 1:9
| | Quick Sort (1) | 341 | 189 | 846 |
| | Regex (25) | 1094 | 2148 | 4224 |
\ | Fetch constants (18) | 212 | 201 | 256 \
| | Closure (100) | 483 | 204 | 771 |
| | Getter_Setter (8) | 401 | 327 | 966 |
| | Simple func call(100) | 4112 | 4106 | 10906 |
\ | New object (100) | 1102 | 1152 | 3445 \
| | n-body (1) | 418 | 481 | 683 |
| | object property (18) | 379 | 1385 | 642 |
| | simple method call (100) | 816 | 1405 | 2200 |
\ | Type hinting (100) | 183 | 235 | 489 \
| | Array (25) | 1122 | 2571 | 4284 |
‘ ‘ singleton pattern (100) ‘ 102 ‘ 62 ‘ 286 ‘
| | Matrix (8) | 7292 | 5832 | 11086 |
\ | Encryption (10) | 8934 | 2992 | 15331 \
| | Total Time | 37.13 | 36 | 77.99 |
‘ ‘ Fibonacci (25) ‘ 71 ‘ 56 ‘ X ‘
| | Prime number (100) | 1495 | 856 | x |
‘ ‘ Ackermann Function(3,3) ‘ 1519 ‘ 1625 ‘ X ‘
| | Loop (1000) | 337 | 161 | x |
| | Math Methods (100) | 3445 | 6438 | x |
‘ ‘ Empty String Check (25) ‘ 9 ‘ 11 ‘ X ‘
‘ ‘ Control Structure (100) ‘ 217 ‘ 25 ‘ X ‘
‘ ‘ String Manipulation (25) ‘ 861 ‘ 374 ‘ X ‘
‘ ‘ Array Search(linear,binary)(10) ‘ 47 ‘ 72 ‘ X ‘
| Fe2 | Quick Sort (1) | 265 | 217 | x |
| | Regex (25) | 880 | 1438 | x |
‘ ‘ Fetch constants (18) ‘ 161 ‘ 138 ‘ X ‘
| | Closure (100) | 386 | 159 | x |
| | Getter_Setter (8) | 319 | 312 | x |
\ | Simple func call(100) | 3316 | 2842 | x \
| | New object (100) | 906 | 1109 | x |
| | n-body (1) | 332 | 372 | |
‘ ‘ object property (18) ‘ 301 ‘ 854 ‘ X ‘

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:10

‘ ‘ simple method call (100) ‘ 671 ‘ 867 ‘ X ‘
| | Type hinting (100) | 147 | 171 | x |
\ | Array (25) | 897 | 1901 | x \
‘ ‘ singleton pattern (100) ‘ 82 ‘ 65 ‘ X ‘
| | Matrix (8) | 5836 | 4509 | |
| | Encryption (10) | 6887 | 2349 | x |
\ | Total time | 29.39 | 27 | x \
| | Fibonacci (25) | 31 | 62 | x |
| | Prime number (100) | 2002 | 1106 | x |
‘ ‘ Ackermann Function(3,3) ‘ 2019 ‘ 2236 ‘ X ‘
| | Loop (1000) | 482 | 188 | x |
| | Math Methods (100) | 4672 | 8846 | x |
‘ ‘ Empty String Check (25) ‘ 15 ‘ 62 ‘ X ‘
‘ ‘ Control Structure (100) ‘ 305 ‘ 16 ‘ X ‘
‘ ‘ String Manipulation (25) ‘ 1280 ‘ 438 ‘ X ‘
‘ ‘ Array Search(linear,binary)(10) ‘ 69 ‘ 47 ‘ X ‘
| re | Quick Sort (1) | 361 | 235 | x |
| | Regex (25) | 1199 | 2018 | x \
‘ ‘ Fetch constants (18) ‘ 235 ‘ 173 ‘ X ‘
| | Closure (100) | 520 | 394 | x |
‘ ‘ Getter_Setter (8) ‘ 445 ‘ 390 ‘ X ‘
| | Simple func call(100) | 4375 | 4197 | x |
| | New object (100) | 1198 | 1469 | x |
| | n-body (1) | 458 | 472 | x |
‘ ‘ object property (18) ‘ 417 ‘ 1278 ‘ X ‘
‘ ‘ simple method call (100) ‘ 873 ‘ 1452 ‘ X ‘
| | Type hinting (100) | 201 | 184 | x |
| | Array (25) | 1225 | 2943 | x |
‘ ‘ singleton pattern (100) ‘ 110 ‘ 93 ‘ X ‘
| | Matrix (8) | 7864 | 7105 | x |
\ | Encryption (10) | 9674 | 3286 | x \
| | Total Time | 40.03 | 39 | x |

Table 1. Performance Evaluation of benchmarks in JPHP and PHP.Bench Codes were run several times and
the minimum value is taken. Total times is measured in seconds.

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

JPHP vs PHP benchmark 1:11

6 FINDINGS/SUGGESTIONS ETC.

JPHP is not the first attempt to improve PHP performance, in the end how effective, we will have to
wait and see.It has elegant API of it’s own but if one wants to use a function that is not implemented
in JPHP, a migration guide is there to migrate the jPHP std library. Using PHP with android is
now possible with JPHP but it’s not stable and in development. By the way, JPHP can do GUI
programming using Swing , examples are given in their website [2] .In this way, it is one of JPHP’s
aims to write programs that are used by non - Web servers in the PHP grammar . It seems that one
can also use other ways to set up a daemon to listen for TCP connections, and to write Android
code

As the source of JPHP is open for all, anyone can contribute to it. But it seems like production
of JPHP is now not that active. The creators of JPHP are not interested in implementation PHP
standard libraries (pcre, pdo, etc). So running Joomla, Drupal or another CMS on JPHP is impossible.
But despite these shortcomings , there are several things that can be planned for the future work.
In short,JPHP seems neat and might have a promising future.If the authors plan to implement the
language with zend runtime libraries,then it might gain popularity like HHVM. They should put
more focus on increasing support in writing PHP for Android apps, because Faster tag won’t attract
most developers to switch entire deployment process to cut off a bit of execution time.

7 CONCLUSION

JPHP was implemented to compile from PHP source code to Java bytecode , and according to the
benchmark test results it turned out that it is a faster processing system than other implementa-
tions.It can be said that JPHP has fully drawn out the power of JVM.

However,JPHP still is in active development. Due to the project goals it does not have the mass
appeal that HHVM.If anyone interested to adopt this language for performance , may keep an eye
on their github repository.[11].

PHP was a capricious candidate, but in the end the operation was successful.For quickly creating a
prototype, a front end for something, using PHP, is conspicuous.In this report, we tried to measure
the performance of JPHP and PHP by taking blended combination of functions for benchmarking.

REFERENCES

] [n. d.]. The PHP Bench. ([n. d.]). http://www.phpbench.com/
2] 2014. JPHP - an alternative to PHP. (2014). http://j-php.net/
3] 2014. JPHP vs PHP benchmark. (2014). https://infogram.com/jphp_vs_php_benchmark
4] 2014. jphp@jphpcompiler. (2014). https://twitter.com/jphpcompiler
5] Hanawa. 2015. JPHP of PHP processing system written in Java was fast. (2015). http://d.hatena.ne jp/hnw/20150117
6] Thiemo MAdttig. 2017. My PHP Performance Benchmarks. (2017). http://maettig.com/code/php/
php-performance-benchmarks.php
[7] Shigebeyond. 2016. jphp-bench-test. (2016). https://github.com/shigebeyond/jphp-bench-test
[8] Dmitry Stogov. 2010. The PHP Interpreter -Zend Benchmark. (2010). https://github.com/php/php-src/blob/master/
Zend/bench.php
[9] Christian Vigh. 2017. PHP Performance Comparison. (2017). https://www.phpclasses.org/blog/post/
493-php-performance-evolution.html
[10] Wikipedia. 2017. List of JVM languages. (2017). https://en.wikipedia.org/wiki/List_of JVM_languages
[11] Dmitry Zaitsev. 2014. jphp. (2014). https://github.com/jphp-compiler
[12] Dmitry Zaitsev. 2014. JPHP - an implementation of PHP. (2014). https://github.com/dim-s/jphp

(1
[
[
[
[
[

, Vol. 1, No. 1, Article 1. Publication date: September 2017.

http://www.phpbench.com/
http://j-php.net/
https://infogram.com/jphp_vs_php_benchmark
https://twitter.com/jphpcompiler
http://d.hatena.ne.jp/hnw/20150117
http://maettig.com/code/php/php-performance-benchmarks.php
http://maettig.com/code/php/php-performance-benchmarks.php
https://github.com/shigebeyond/jphp-bench-test
https://github.com/php/php-src/blob/master/Zend/bench.php
https://github.com/php/php-src/blob/master/Zend/bench.php
https://www.phpclasses.org/blog/post/493-php-performance-evolution.html
https://www.phpclasses.org/blog/post/493-php-performance-evolution.html
https://en.wikipedia.org/wiki/List_of_JVM_languages
https://github.com/jphp-compiler
https://github.com/dim-s/jphp

	Abstract
	1 Introduction
	2 Motivation
	3 Methodology
	4 Different Techniques & Optimization
	5 Experiment Design and Performance Analysis
	6 Findings/Suggestions etc.
	7 Conclusion
	References

