
Java

Java Concurrency Utilities

Java Concurrency Utilities

• The concurrency utilities are contained in
java.util.concurrent, java.util.concurrent.atomic, and
java.util.concurrent.locks (all in the java.base)

• java.util.concurrent defines the core features that
support alternatives to the built-in approaches to
synchronization and interthread communication

– Synchronizers

– Executors

– Concurrent Collections

– The Fork/Join Framework

Prepared By - Rifat Shahriyar

Synchronizers

• Synchronizers offer high-level ways of synchronizing
the interactions between multiple threads

• Synchronization objects are supported by:

– Semaphore

– CountDownLatch

– CyclicBarrier

– Exchanger

– Phaser

• Collectively, they enable to handle several formerly
difficult synchronization situations with ease

Prepared By - Rifat Shahriyar

Executors

• Executor initiates and controls the execution of
threads

– Executor offers an alternative to managing threads
through the Thread class

• At the core of an executor is the Executor interface

– The ExecutorService interface extends Executor by adding
methods that help manage and control the execution of
threads

– Java provides Thread Pool implementation with
ExecutorService

Prepared By - Rifat Shahriyar

Thread Pool

• Thread Pools are useful when you need to limit the
number of threads running in your application

– Performance overhead starting a new thread

– Each thread is also allocated some memory for its stack

• Instead of starting a new thread for every task to
execute concurrently, the task can be passed to a
thread pool

– As soon as the pool has any idle threads the task is
assigned to one of them and executed

• Thread pools are often used in multithreaded servers

Prepared By - Rifat Shahriyar

ExecutorService

Prepared By - Rifat Shahriyar

Callable and Future

• Runnable cannot return a result to the caller

• Callable object allows to return values after
completion

• Callable task returns a Future object to return result

• The result can be obtained using get() that remains
blocked until the result is computed

• Check completion by isDone(), cancel by cancel()

• Example: CallableFutures.java

Prepared By - Rifat Shahriyar

Concurrent Collections

• java.util.concurrent defines several concurrent
collection classes

– ConcurrentHashMap

– BlockingQueue

– BlockingQueue etc.

• BlockingQueue can be used to solve the producer-
consumer problem

– No need to use wait(), notify(), notifyAll()

• Example: PCBlockingQueue.java

Prepared By - Rifat Shahriyar

TimeUnit

• To better handle thread timing, java.util.concurrent
defines the TimeUnit enumeration

– The concurrent API defines several methods that take
TimeUnit as argument, which indicates a time-out period

• TimeUnit is an enumeration that is used to specify
the granularity (or resolution) of the timing

• It can be one of the following values:

– DAYS, HOURS, MINUTES, SECONDS, MICROSECONDS,
MILLISECONDS, NANOSECONDS

• TimeUnit.SECONDS.sleep(1) is same as sleep(1000)

Prepared By - Rifat Shahriyar

Atomic

• java.util.concurrent.atomic offers an alternative to
the other synchronization features when reading or
writing the value of some types of variables

– This package offers methods that compare the value of a
variable in one uninterruptible (atomic) operation

– No lock or other synchronization mechanism is required

• Atomic operations are accomplished through:

• Classes: AtomicInteger, AtomicLong

• Methods: get(), set(), compareAndSet(), decrementAndGet(),
incrementAndGet(), getAndSet() etc.

Prepared By - Rifat Shahriyar

Lock

• java.util.concurrent.locks provides support for locks,
which are objects that offer an alternative to using
synchronized to control access to a shared resource

• The Lock interface defines a lock. The methods are:

– To acquire a lock, call lock(). If the lock is unavailable, lock()
will wait

– To release a lock, call unlock()

– To see if a lock is available, and to acquire it if it is, call
tryLock(). This method will not wait for the lock if it is
unavailable, it returns true if acquired and false otherwise

Prepared By - Rifat Shahriyar

Lock

• ReentrantLock is a lock that can be repeatedly
entered by the thread that currently holds the lock

• ReentrantReadWriteLock is a ReadWriteLock that
maintains separate locks for read and write access

– Multiple locks are granted for readers of a resource as long
as the resource is not being written

• The advantage to using these methods is greater
control over synchronization

• Example: SynchronizationLock.java

Prepared By - Rifat Shahriyar

The Fork/Join Framework

• Fork/Join framework supports parallel programming

• It enhances multithreaded programming

– Simplifies the creation and use of multiple threads

– Enables applications to automatically scale to make use of
the number of available processors

• Recommended approach to multithreading when
parallel processing is desired

• Classes: ForkJoinTask, ForkJoinPool, RecursiveTask,
RecursiveAction

• Example: ForkJoinTest.java

Prepared By - Rifat Shahriyar

