SQL - Structured Query Language

More More Details

Rifat Shahriyar
Dept of CSE, BUET

Tables

EMPNO | ENAME | JOB MGR | HIREDATE | SAL | DEPTNO
7369 | SMITH | CLERK 7902 | 17-DEC-80 | 800 | 20
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 | 1600 | 30
EMP| 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 | 1250 | 30
7698 | BLAKE | MANAGER 01-MAY-81 | 3850 | 30
7902 | FORD | ANALYST | 7566 | 03-DEC-81 | 3000 | 10
DEFTNO | DNAME LocC
10 STORE CHICAGO
DEPT| 220 RESEARCH | DALLAS
30 SALES NEW YORK
40 MARKETING | EOSTON

Group By

e We have seen how aggregate functions can be used to
compute a single value for a column.

e Often applications require grouping rows that have certain

properties and then applying an aggregate function on one
column for each group separately.

e For this, SQL provides the clause group by <group column(s)>.
This clause appears after the where clause and must refer to
columns of tables listed in the from clause.

select <column(s)=

from <table(s)>

where < condition=

group by <group_columnis)=
[having < group_condition(s)>];

Group By

Those rows retrieved by the selected clause that have the
same value(s) for <group column(s)> are grouped.

Aggregations specified in the select clause are then applied to
each group separately.

It is important that only those columns that appear in the
<group column(s)> clause can be listed without an aggregate
function in the select clause.

For each department, we want to retrieve the minimum and
maximum salary.

— select DEPTNO, min(SAL), max(SAL) from EMP group by
DEPTNO

Group By

Rows to form a group can be restricted in the where clause.
For example, if we add the condition where JOB = ‘CLERK,
only respective rows build a group. The query then would
retrieve the minimum and maximum salary of all clerks for
each department.

Note that is not allowed to specify any other column than
DEPTNO without an aggregate function in the select clause
since this is the only column listed in the group by clause.

Group By/Having

Once groups have been formed, certain groups can be
eliminated based on their properties, e.g., if a group contains
less than three rows.

This type of condition is specified using the having clause. As
for the select clause also in a having clause only <group
column(s)> and aggregations can be used.

Retrieve the minimum and maximum salary of clerks for each
department having more than three clerks.

— select DEPTNO, min(SAL), max(SAL) from EMP where JOB
=CLERK’ group by DEPTNO having count(*) > 3

Note that it is even possible to specify a sub query in a having
clause.

Group By/Having

e A query containing a group by clause is processed in the
following way:

— Select all rows that satisfy the condition specified in the
where clause.

— From these rows form groups according to the group by
clause.

— Discard all groups that do not satisfy the condition in the
having clause.

— Apply aggregate functions to each group.

— Retrieve values for the columns and aggregations listed in
the select clause.

Exists/Not Exists

exists (sub-select)

— The predicate is true if the sub-select results in a
nonempty set of values. The predicate is false otherwise.

not exists (sub-select)

— The predicate is true if the sub-select results in an empty
set of values. The predicate is false otherwise.

Find the employee name who is leading at least one project.

— select ENAME from EMP where exists (select ‘a’ from
PROJECT where PMGR=EMP.EMPNO)

Find the employee name who is leading no project.

— select ENAME from EMP where not exists (select ‘a’ from
PROJECT where PMGR=EMP.EMPNO)

Exists/Not Exists

e Find all customers who have an account at all branches
located in Brooklyn.

= select distinct S.cname from depositor S where not exists (

(

select bname from branch where bcity = 'Brooklyn’

)

minus

(

select R.bname from depositor T, account R where
T.accountno = R.accountno and S.cname = T.cname

)
)

View

In some cases, it is not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

Consider a person who needs to know a employees name, job
and dept but has no need to see the salary.

This person should see a relation described, in SQL, by
— select ENAME, JOB, DEPTNO from EMP

A view provides a mechanism to hide certain data from the
view of certain users.

View

* |n Oracle the SQL command to create a view has the form

create [l:‘.-l‘ 1‘{'*1)1;‘1111"] vView < view-naie s [| ‘column(s) = |] as
<select-statement > [with check option [constraint <name>|];

e The optional clause or replace re-creates the view if it already
exists. If <column(s)> is not specified in the view definition,
the columns of the view get the same names as the attributes
listed in the select statement.

e When a view is created, the query is stored in the database,
the expression is substituted into queries using the view.

View

e The following view contains the name, job title and the annual
salary of employees working in the department 20.
— create view DEPT20 as select ENAME, JOB, SAL*12 as
ANNUAL SALARY from EMP where DEPTNO = 20

 In the select statement the column alias ANNUAL SALARY is
specified for the expression SAL*12 and this alias is taken by

the view.
* An alternative formulation of the above view definition is
— create view DEPT20 (ENAME, JOB, ANNUAL SALARY) as
select ENAME, JOB, SAL * 12 from EMP where DEPTNO =

20

View

e A view can be used in the same way as a table, that is, rows
cah be retrieved from a view or rows can even be modified.

 In Oracle SQL no insert, update, or delete modifications on
views are allowed that use one of the following constructs in
the view definition:

— joins
— aggregate function such as sum, min, max etc

— set-valued sub queries (in, any, all) or test for existence
(exists)

— group by clause or distinct clause
— new/modified row does not meet the view definition

Sequence

Sequence are used for automatic number generation.
How to create a sequence

— create sequence mysequence minvalue 1 start with 1
increment by 1

How to use any sequence

— insert into DEPT (select
mysequence.nextval, NAME’’LOC’)

How to modify

— Alter sequence mysequence
increment by 5

Alter

e |t is possible to modify the structure of a table (the relation
schema) even if rows have already been inserted into this

table.
e To add a column to an existing table:
— alter table table_name add column_name
column_definition
— For example:
— alter table EMP add DOB date

Alter

e To add multiple columns to an existing table:
— alter table table_name add (

column_1 column_definition,
column_2 column_definition,
column_n column_definition)

e To modify a column in an existing table:

— alter table table_ name modify column_name
column_type

— For example:
— alter table EMP modify ENAME varchar2(100) not null

Alter

e To modify multiple columns in an existing table:
— alter table table_name modify (

column_1 column_type,
column_2 column_type,
column_n column_type)

e To drop a column in an existing table:
— alter table table_name drop column column_name
— For example:
— alter table EMP drop column DOB

Alter

To rename a column in an existing table:

— alter table table_name rename column old _name to
new_name

For example:

— alter table EMP rename column SAL to SALARY
To rename a table:

— alter table table_name rename to new_table_name
For example:

— alter table EMP rename to EMPNEW

Alter

It is also possible to add/drop constraints using the alter
command.

To add a table-level constraint to an existing table.

— alter table table_name add constraint constraint_name
constraint_type (column_name)

— alter table EMP add constraint EMP_PK primary key
(EMPNO)

To drop a constraint on an existing table using constraint
name

— alter table table_name drop constraint constraint_name
— alter table EMP drop constraint EMP_PK

End

	SQL – Structured Query Language
	Tables
	Group By
	Group By
	Group By
	Group By/Having
	Group By/Having
	Exists/Not Exists
	Exists/Not Exists
	View
	View
	View
	View
	Sequence
	Alter
	Alter
	Alter
	Alter
	Alter
	End

