
SQL – Structured Query Language

More Details

Rifat Shahriyar

Dept of CSE, BUET

Tables

EMP

DEPT

2

String

• We know that in order to compare an attribute with a string,
it is required to surround the string by quotes

– select * from DEPT where DNAME=‘SALES’

• A powerful operator for pattern matching is the like operator.

• Together with this operator, two special characters are used

– percent sign % (wild card) & underline _ (position marker)

• Find the employees whose name starts with ‘S’.

– select * from EMP where ENAME like ‘S%’

• Find the employees whose name starts with ‘S’ and ends with
‘T’

– select * from EMP where ENAME like ‘S%T’
3

String

• Find all tuples of the table DEPT that contain two C in the
name of the department

– select * from DEPT where DNAME like ’%C%C%’

• Find all tuples of the table DEPT that contain exactly one
character appears between the two Cs .

– select * from DEPT where DNAME like ’%C_C%’

4

String

• upper(string) : upper(‘aBcd’) – ‘ABCD’

• lower(string) : lower(‘aBcd’) – ‘abcd’

• initcap(string) : initcap(‘aBcd’) – ‘Abcd’

• length(string) : length(‘abcd’) ‐ 4

• substr(string, start, [n]) : substr(‘abcdefgh’,2,4) ‐ bcde

• lpad(string,length,[‘chars’]) : lpad(‘ha’,5,’a’) ‐ aaaha

• rpad(string,length,[‘chars’]) : rpad(‘ha’,5,’a’) ‐ haaaa

• ltrim(string, [‘chars’]) : ltrim(‘abracadabra’,’ab’)‐ ‘racadabra’

• rtrim(string, [‘chars’]) : rtrim(‘abracadabra’,’ab’)‐ ‘abracadabr’

5

String

• instr(string, ‘chars’[,start [,n]]) : instr(‘abracadabra’,’cad’) – 5

– select * from EMP where instr(ENAME,’John’) > 0

• String concatenation

– can be done using ||

– select EMPNO|| ‘, ’ || ENAME from EMP

• One more thing, any query result’s column can be renamed to
any other name. This is known as alias.

– select EMPNO|| ‘, ’ || ENAME as EID from EMP

6

Date

• Oracle’s default format is ‘DD‐MON‐YY’

• Sysdate ‐ returns the current date

– select sysdate from dual

• to_date ‐ returns a date

– select to_date(’12‐01‐2001’,’DD‐MM‐YYYY’) from dual

• to_char ‐ returns a string

– select to_char(sysdate,’DD‐MON‐YY, HH:MI:SS’) from dual

• to_number – returns a number

– select to_number(‘1234’) from dual

7

Date Formats

8

Sub Query

• Up to now we have only concentrated on simple comparison
conditions in a where clause.

– we have compared a column with a constant

– we have compared two columns.

• We have already seen for the insert statement, queries can be
used for assignments to columns.

• A query result can also be used in a condition of a where
clause.

• In such a case the query is called a sub query and the
complete select statement is called a nested query.

9

Sub Query

• List the name and salary of employees of the department 20
who are leading a project that started before December 31,
1990:

– select ENAME, SAL from EMP where DEPTNO =20 and
EMPNO in (select PMGR from PROJECT where PSTART <
’31‐DEC‐90’)

• The sub query retrieves the set of those employees who
manage a project that started before December 31, 1990.

• If the employee working in department 20 is contained in this
set (in operator), this tuple belongs to the query result set.

10

Sub Query

• List all employees who are working in a department located in
BOSTON:

– select * from EMP where DEPTNO in (select DEPTNO from
DEPT where LOC = ’BOSTON’)

• The sub query retrieves only one value (the number of the
department located in Boston). So it is possible to use =
instead of in.

• As long as the result of a sub query is not known in advance, (
whether it is a single value or a set), it is advisable to use the
in operator.

11

Sub Query

• A sub query may use again a sub query in its where clause.
Thus conditions can be nested arbitrarily.

• An important class of sub queries are those that refer to its
surrounding (sub)query and the tables listed in the from
clause, respectively.

• List all those employees who are working in the same
department as their manager

– select * from EMP E1 where DEPTNO in (select DEPTNO
from EMP [E] where [E.]EMPNO = E1.MGR)

• What we can see here ? Table can also be given alias in the
query.

12

Sub Query

– select * from EMP E1 where DEPTNO in (select DEPTNO from
EMP [E] where [E.]EMPNO = E1.MGR)

• One can think of the evaluation of this query as follows:

– For each tuple in the table E1, the sub query is evaluated
individually.

– If the condition (where DEPTNO in . . .) evaluates to true,
this tuple is selected.

• Note that an alias for the table EMP in the sub query is not
necessary since columns without a preceding alias listed there
always refer to the innermost query and tables.

13

Aggregation

• Count ‐ Counting Rows

• How many tuples are stored in the relation EMP?

– select count(*) from EMP

• How many different job titles are stored in the relation EMP?

– select count(distinct JOB) from EMP

• Sum ‐ Computes the sum of values (only applicable to the
data type number)

• Find the sum of all salaries of employees working in the
department 30.

– select sum(SAL) from EMP where DEPTNO = 30

14

Aggregation

• Max/Min – Maximum/Minimum value for a column

• List the minimum and maximum salary.

– select min(SAL), max(SAL) from EMP

• Compute the difference between the minimum and maximum
salary.

– select max(SAL) ‐min(SAL) as difference from EMP

• Avg ‐ Computes average value for a column (only applicable to
the data type number)

• Find the average salaries of employees working in the
department 10.

– select avg(SAL) from EMP where DEPTNO = 10

•
15

Aggregation

• Ignores tuples that have a null value for the specified
attribute.

• It is not possible to use aggregation of aggregation. So
max(avg(..)) is not possible.

• Aggregation can be placed in sub query.

• Find the name of the employee with maximum salary.

– select ENAME from EMP where SAL = (select max(SAL)
from EMP)

16

Any/All

• For the clause any, the condition evaluates to true if there
exists at least on row selected by the sub query for which the
comparison holds.

• If the sub query yields an empty result set, the condition is
not satisfied.

• Retrieve all employees who are working in department 10 and
who earn at least as much as any (at least one) employee
working in department 30.

– select * from EMP where DEPTNO = 10 and SAL >= any
(select SAL from EMP where DEPTNO = 30)

17

Any/All

• For the clause all, the condition evaluates to true if for all
rows selected by the sub query the comparison holds.

• In this case the condition evaluates to true if the sub query
does not yield any row or value.

• List all employees who are not working in department 30 and
who earn more than all employees working in department 30:

– select * from EMP where DEPTNO <> 30 and SAL > all
(select SAL from EMP where DEPTNO = 30)

• Find the name of the employee with maximum salary.

– select ENAME from EMP where SAL >=all(select SAL from
EMP)

18

Union/Intersection/Minus

• Sometimes it is useful to combine query results from two or
more queries into a single result. SQL supports three set
operators which have the pattern:

<query 1> <set operator> <query 2>

• union [all] returns a table consisting of all rows either
appearing in the result of <query1> or in the result of <query
2>. Duplicates are automatically eliminated unless the clause
all is used.

• intersect returns all rows that appear in both results <query
1> and <query 2>.

• minus returns those rows that appear in the result of <query
1> but not in the result of <query 2>.

19

Union/Intersection/Minus

• Assuming we have a table EMP2 that has the same structure
and columns as the table EMP.

• All employee numbers and names from both tables.

– select EMPNO, ENAME from EMP union select EMPNO,
ENAME from EMP2

• Employees who are listed in both EMP and EMP2.

– select * from EMP intersect select * from EMP2

• Employees who are only listed in EMP.

– select * from EMP minus select * from EMP2

• Each operator requires that both tables have the same data
types for the columns to which the operator is applied.

20

Join

• Joins are very important for relational databases.

• Mainly used when we need to find information that
distributes over multiple tables.

• For each salesman, we now want to retrieve the name as well
as the number and the name of the department where he is
working.

• ENAME – {EMP}, DNAME‐ {DEPT}, DEPTNO – {EMP, DEPT}

– select ENAME, E.DEPTNO, DNAME from EMP E, DEPT D
where E.DEPTNO = D.DEPTNO and JOB = ’SALESMAN’

21

Join

• The computation of the query result occurs in the following
manner

– Each row from the table EMP is combined with each row
from the table DEPT (this operation is called Cartesian
Product). If EMP contains m rows and DEPT contains n
rows, we thus get n * m rows.

– From these rows those that have the same department
number are selected (where E.DEPTNO = D.DEPTNO).

– From this result finally all rows are selected for which the
condition JOB = ’SALESMAN’ holds.

22

Join

• Any number of tables can be combined in a select statement.

• For each project, retrieve its name, the name of its manager,
and the name of the department where the manager is
working.

– select ENAME, DNAME, PNAME from EMP E, DEPT D,
PROJECT P where E.EMPNO = P.MGR and D.DEPTNO =
E.DEPTNO

• It is even possible to join a table with itself:

• List the names of all employees together with the name of
their manager.

– select E1.ENAME, E2.ENAME from EMP E1, EMP E2 where
E1.MGR = E2.EMPNO

23

Join

• For each department, number and the name of the
department and also the employees name working in the
department.

– select DNAME,EMP.DEPTNO,ENAME from DEPT, EMP
where DEPT.DEPTNO = EMP.DEPTNO

• This is also known as inner join

– select DNAME,EMP.DEPTNO,ENAME from DEPT inner
join EMP on DEPT.DEPTNO = EMP.DEPTNO

• Another way is to by natural join

– select DNAME,DEPTNO,ENAME from DEPT natural join
EMP

24

Join

• Another type of join is as left outer join. Here all the rows
from left table will be included in the result.

– select DNAME,EMP.DEPTNO,ENAME from DEPT left outer
join EMP on DEPT.DEPTNO = EMP.DEPTNO

– select DNAME,EMP.DEPTNO,ENAME from DEPT,EMP
where DEPT.DEPTNO = EMP.DEPTNO(+)

• Another type of join is as right outer join. Here all the rows
from right table will be included in the result.

– select DNAME,EMP.DEPTNO,ENAME from DEPT right
outer join EMP on DEPT.DEPTNO = EMP.DEPTNO

– select DNAME,EMP.DEPTNO,ENAME from DEPT,EMP
where DEPT.DEPTNO(+) = EMP.DEPTNO

25

Join

• Another type of join is as full outer join. Here all the rows
from left table and right table will be included.

– select DNAME,EMP.DEPTNO,ENAME from DEPT full outer
join EMP on DEPT.DEPTNO = EMP.DEPTNO

• In all outer joins some of the resulting columns may be null.

26

End

	SQL – Structured Query Language
	Tables
	String
	String
	String
	String
	Date
	Date Formats
	Sub Query
	Sub Query
	Sub Query
	Sub Query
	Sub Query
	Aggregation
	Aggregation
	Aggregation
	Any/All
	Any/All
	Union/Intersection/Minus
	Union/Intersection/Minus
	Join
	Join
	Join
	Join
	Join
	Join
	End

