N
L/

Stacks

=%

A\

Outline and Reading

@® The Stack ADT (4.2.1)
@ Applications of Stacks (4.2.3)

@ Array-based implementation (4.2.2)
@ Growable array-based stack

Stacks

Abstract Data Types (ADTSs)

A\

@ An abstract data @ Example: ADT modeling a
type (ADT) Isan simple stock trading system

abstraction of a = The data stored are buy/sell
data structure

= orders
@ An ADT specifies: = The operations supported are
= Data stored + order buy(stock, shares, price)
= Operations on the + order sell(stock, shares, price)
data + void cancel(order)
= Error conditions s Error conditions:
assoclated with

+ Buy/sell a nonexistent stock

operations .
+ Cancel a nonexistent order

Stacks 3

The Stack ADT

p
\J
#® The Stack ADT stores @ Auxiliary stack
arbitrary objects operations:
® Insertions and deletions = top(): returns a reference
follow the last-in first-out to-he.last nserted. ...
element without removing
scheme 1
@ Think of a spring-loaded = size(): returns the number
plate dispenser of elements stored
€ Main stack operations: = ISEmpty(): returns a
: o Boolean value indicating
= push(object 0): inserts
whether no elements are
element o

stored
= pop(): removes and returns

the last inserted element

Stacks 4

Exceptions

A\

@ Attempting the
execution of an

an exception

operation of ADT may
sometimes cause an
error condition, called

@ Exceptions are said to

be “thrown” by an

operation that cannot

be executed

Stacks

In the Stack ADT,

operations pop and

top cannot be

performed if the
stack i1s empty

@ Attempting the

execution of pop or
top on an empty
stack throws an
EmptyStackException

5

Applications of Stacks

A\

@ Direct applications
= Page-visited history in a Web browser
s Undo sequence in a text editor

= Saving local variables when one function calls
another, and this one calls another, and so on.

@ Indirect applications
= Auxiliary data structure for algorithms
= Component of other data structures

Stacks

C++ Run-time Stack

)
@ The C++ run-time system mgm()_{ |
keeps track of the chain of Inti =9;
active functions with a stack foo(i);
@ \When a function is called, the }
run-time system pushes on the foo(int j) {
stack a frame containing otk
= Local variables and return value]
5 . K=]+1;
m Program counter, keeping track of .
the statement being executed bar(k);
® When a function returns, its }

frame is popped from the stack -
and control is passed to the bar(int m) {
method on top of the stack

Stacks

A\

Array-based Stack

@ A simple way of
Implementing the
Stack ADT uses an
array

® \We add elements

from left to right

@ A variable keeps
track of the index of
the top element

Algorithm size()
returnt + 1

Algorithm pop()
If iIsEmpty() then
throw EmptyStackException
else
te—t-1
return S[t + 1]

sCITTTTTIN ~ SITT

0 1 2

Stacks 8

A\

The array storing the
stack elements may
become full

A push operation will
then throw a
FullStackException

= Limitation of the array-
based Implementation

s Not intrinsic to the
Stack ADT

Array-based Stack (cont.)

Algorithm push(o)
If t = S.length — 1 then
throw FullStackException
else
te—t+1

S[t] «0

sCITTTTTIN - SNLITTTTT]

0 1 2

Stacks 9

Performance and Limitations

A\

€ Performance
= Let n be the number of elements in the stack
= The space used is O(n)
= Each operation runs in time O(1)

@ Limitations

s The maximum size of the stack must be defined a
priori , and cannot be changed

= Trying to push a new element into a full stack
causes an implementation-specific exception

Stacks 10

A\

® In a push operation, when
the array is full, instead of
throwing an exception, we
can replace the array with
a larger one

€ How large should the new
array be?

= Incremental strategy:
Increase the size by a
constant ¢

= doubling strategy: double
the size

Stacks

Growable Array-based Stack

Algorithm push(o)

If t = S.length — 1 then
A < new array of
size ...
fori< Ototdo
All] « S[i]

S« A
te—t+1
S[t] « o0

11

A\

® Interface
corresponding to
our Stack ADT

® Requires the
definition of class
EmptyStackException

#® Most similar STL
construct Is vector

Stack Interface in C++

template <typename Object>
class Stack {
public:
Int size();
bool iIsEmpty();
Object& top()
throw(EmptyStackException);
void push(Object 0);
Object pop()
throw(EmptyStackException);

Stacks 12

J A\

Array-based Stack In C++

template <typename Object>
class ArrayStack {
private:
int capacity;
Object *S;
int top;
public:
ArrayStack(int ¢) {
capacity = c;
S = new Object[capacity];
= _]_’

bool iIsEmpty()
{ return (t<0); }

Object pop()
throw(EmptyStackException) {
If(ISEmpty())
throw EmptyStackException

(“Access to empty stack”);
return Sft--|;

}

Stacks 13

	Stacks
	Outline and Reading
	Abstract Data Types (ADTs)
	The Stack ADT
	Exceptions
	Applications of Stacks
	C++ Run-time Stack
	Array-based Stack
	Array-based Stack (cont.)
	Performance and Limitations
	Growable Array-based Stack
	Stack Interface in C++
	Array-based Stack in C++

