Analysis of Algorithms

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

Running Time (§3.1)

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
- Easier to analyze

- Crucial to applications such as games, finance and robotics

Experimental Studies (§ 3.1.1)

Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n.
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode (§3.1.2)

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

Algorithm $\operatorname{arrayMax}(A, n)$
Input array \boldsymbol{A} of \boldsymbol{n} integers
Output maximum element of A
currentMax $\leftarrow A[0]$
for $\boldsymbol{i} \leftarrow 1$ to $\boldsymbol{n}-1$ do
if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$
return currentMax

Pseudocode Details

- Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration

Algorithm method (arg [, arg...]) Input ...
Output ...

- Method/Function call var.method (arg [, arg...])
- Return value
return expression
- Expressions
\leftarrow Assignment (like = in C++)
= Equality testing (like == in C++)
n^{2} Superscripts and other mathematical formatting allowed

The Random Access Machine

 (RAM) Model
A CPU

- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character

- Memory cells are numbered and accessing any cell in memory takes unit time.

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model
- Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
- Comparing two numbers

Counting Primitive Operations (§3.4.1)

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

Algorithm $\operatorname{arrayMax}(A, n)$
currentMax $\leftarrow A[0]$
for $\boldsymbol{i} \leftarrow 1$ to $\boldsymbol{n}-1$ do
if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$
\{ increment counter i \}
return currentMax
\# operations
2
$1+n$
$2(n-1)$
$2(n-1)$
2($n-1$)
1

Total $7 \boldsymbol{n}-2$

Estimating Running Time

- Algorithm arrayMax executes $7 \boldsymbol{n}-2$ primitive operations in the worst case.
- What about in the best case ?
- Define:
$a=$ Time taken by the fastest primitive operation
$\boldsymbol{b}=$ Time taken by the slowest primitive operation
Let $T(n)$ be worst-case time of arrayMax. Then

$$
\boldsymbol{a}(7 \boldsymbol{n}-2) \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{b}(7 \boldsymbol{n}-2)
$$

- Hence, the running time $T(n)$ is bounded by two linear functions

Growth Rate of Running Time

* Changing the hardware/ software environment
- Affects $\boldsymbol{T}(\boldsymbol{n})$ by a constant factor, but
- Does not alter the growth rate of $\boldsymbol{T}(\boldsymbol{n})$
*The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm arrayMax

Growth Rates

- Growth rates of functions:
- Linear $\approx \boldsymbol{n}$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$

Constant Factors

Big-Oh Notation (§3.5)

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_{0} such that

$$
f(n) \leq \boldsymbol{c g}(n) \text { for } n \geq n_{0}
$$

Example: $2 \boldsymbol{n}+10$ is $\mathbf{O}(\boldsymbol{n})$

- $2 \boldsymbol{n}+10 \leq \boldsymbol{c}$
- Pick $\boldsymbol{c}=12$ and $\boldsymbol{n}_{\mathbf{0}}=1$

Big-Oh Example

- Example: the function \boldsymbol{n}^{2} is not $\boldsymbol{O}(\boldsymbol{n})$
- $n^{2} \leq \boldsymbol{c}$
- $\boldsymbol{n} \leq \boldsymbol{c}$
- The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

■ 7n-2
$7 n-2$ is $\mathrm{O}(\mathrm{n})$
need $c>0$ and $n_{0} \geq 1$ such that $7 n-2 \leq c \cdot n$ for $n \geq n_{0}$ this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$

- $3 n^{3}+20 n^{2}+5$
$3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$
need $c>0$ and $n_{0} \geq 1$ such that $3 n^{3}+20 n^{2}+5 \leq c \bullet n^{3}$ for $n \geq n_{0}$
this is true for $\mathrm{c}=28$ and $\mathrm{n}_{0}=1$
- $3 \log n+\log \log n$
$3 \log n+\log \log n$ is $O(\log n)$
need $c>0$ and $n_{0} \geq 1$ such that $3 \log n+\log \log n \leq c \cdot \log n$ for $n \geq n_{0}$ this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement " $f(n)$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$)" means that the growth rate of $f(n)$ is no more than the growth rate of $\boldsymbol{g}(\boldsymbol{n})$
- We can use the big-Oh notation to rank functions according to their growth rate

	$\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$\boldsymbol{f}(\boldsymbol{n})$ grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $O\left(n^{d}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

- Use the smallest possible class of functions
- Say " $2 n$ is $O(n)$ " instead of " $2 n$ is $O\left(n^{2}\right)$ "
- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "

Relatives of Big-Oh

- big-Omega

- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $n_{0} \geq 1$ such that

$$
f(n) \geq c \cdot g(n) \text { for } n \geq n_{0}
$$

- big-Theta
- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}>0$ and an integer constant $n_{0} \geq 1$ such that

$$
c^{\prime} \cdot g(n) \leq f(n) \leq c^{\prime \prime} \cdot g(n) \text { for } n \geq n_{0}
$$

Intuition for Asymptotic

Notation

Big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$ big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$ big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$

Example Uses of the Relatives of Big-Oh

- $5 n^{2}$ is $\Omega\left(n^{2}\right)$
$\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_{0}$ let $\mathrm{c}=5$ and $\mathrm{n}_{0}=1$
- $5 n^{2}$ is $\Omega(n)$
$\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $\mathrm{f}(\mathrm{n}) \geq \mathrm{c} \cdot \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$ let $\mathrm{c}=1$ and $\mathrm{n}_{0}=1$

