
Java

More Details

Array

2Prepared By - Rifat Shahriyar

Arrays

• A group of variables containing values that all have
the same type

• Arrays are fixed‐length entities

• In Java, arrays are objects, so they are considered
reference types

• But the elements of an array can be either primitive
types or reference types

3Prepared By - Rifat Shahriyar

Arrays

• We access the element of an array using the
following syntax

– name[index]

– “index” must be a nonnegative integer

• “index” can be int/byte/short/char but not long

• In Java, every array knows its own length

• The length information is maintained in a public final
int member variable called length

4Prepared By - Rifat Shahriyar

Declaring and Creating Arrays

• int c[] = new int [12]

– Here, “c” is a reference to an integer array

– “c” is now pointing to an array object holding 12 integers

– Like other objects arrays are created using “new” and are
created in the heap

– “int c[]” represents both the data type and the variable
name. Placing number here is a syntax error

– int c[12]; // compiler error

5Prepared By - Rifat Shahriyar

Declaring and Creating Arrays

• int[] c = new int [12]

– Here, the data type is more evident i.e. “int[]”

– But does the same work as

• int c[] = new int [12]

• Is there any difference between the above two
approaches?

6Prepared By - Rifat Shahriyar

Declaring and Creating Arrays

• int c[], x

– Here, ‘c’ is a reference to an integer array

– ‘x’ is just a normal integer variable

• int[] c, x;

– Here, ‘c’ is a reference to an integer array (same as before)

– But, now ‘x’ is also a reference to an integer array

7Prepared By - Rifat Shahriyar

Arrays

8Prepared By - Rifat Shahriyar

Using an Array Initializer

• We can also use an array initializer to create an array

– int n[] = {10, 20, 30, 40, 50}

• The length of the above array is 5

• n[0] is initialized to 10, n[1] is initialized to 20, and so
on

• The compiler automatically performs a “new”
operation taking the count information from the list
and initializes the elements properly

9Prepared By - Rifat Shahriyar

Arrays of Primitive Types

• When created by “new”, all the elements are
initialized with default values

– byte, short, char, int, long, float and double are initialized
to zero

– boolean is initialized to false

• This happens for both member arrays and local arrays

10Prepared By - Rifat Shahriyar

Arrays of Reference Types

• String [] str = new String[3]

– Only 3 String references are created

– Those references are initialized to null by default

– Need to explicitly create and assign actual String objects in
the above three positions.

• str[0] = new String(“Hello”);

• str[1] = “World”;

• str[2] = “I” + “ Like” + “ Java”;

11Prepared By - Rifat Shahriyar

Passing Arrays to Methods

void modifyArray(double d[]) {…}

double [] temperature = new double[24];

modifyArray(temperature);

• Changes made to the elements of ‘d’ inside
“modifyArray” is visible and reflected in the
“temperature” array

• But inside “modifyArray” if we create a new array
and assign it to ‘d’ then ‘d’ will point to the newly
created array and changing its elements will have no
effect on “temperature”

12Prepared By - Rifat Shahriyar

Passing Arrays to Methods

• Changing the elements is visible, but changing the
array reference itself is not visible

void modifyArray(double d[]) {

d[0] = 1.1; // visible to the caller

}

void modifyArray(double d[]) {

d = new double [10];

d[0] = 1.1; // not visible to the caller

}

13Prepared By - Rifat Shahriyar

Multidimensional Arrays

• Can be termed as array of arrays.

• int b[][] = new int[3][4];

– Length of first dimension = 3

• b.length equals 3

– Length of second dimension = 4

• b[0].length equals 4

• int[][] b = new int[3][4];

– Here, the data type is more evident i.e. “int[][]”

14Prepared By - Rifat Shahriyar

Multidimensional Arrays

• int b[][] = { { 1, 2, 3 }, { 4, 5, 6 } };

– b.length equals 2

– b[0].length and b[1].length equals 3

• All these examples represent rectangular two
dimensional arrays where every row has same
number of columns

• Java also supports jagged array where rows can have
different number of columns

15Prepared By - Rifat Shahriyar

Multidimensional Arrays

Example – 1
int b[][];
b = new int[2][];
b[0] = new int[2];
b[1] = new int[3];
b[0][2] = 7; //will throw an exception

Example – 2
int b[][] = { { 1, 2 }, { 3, 4, 5 } };
b[0][2] = 8; //will throw an exception

In both cases
b.length equals 2
b[0].length equals 2
b[1].length equals 3

Array ‘b’

Col 0 Col 1 Col 2

Row 0

Row 1

b[0][2] does not exist

16Prepared By - Rifat Shahriyar

Command Line Arguments

17Prepared By - Rifat Shahriyar

Using Command‐Line Arguments

• java MyClass arg1 arg2 … argN

– words after the class name are treated as command‐line
arguments by Java

– Java creates a separate String object containing each
command‐line argument, places them in a String array and
supplies that array to main

– That’s why we have to have a String array parameter
(String args[]) in main

– We do not need a “argc” type parameter (for parameter
counting) as we can easily use “args.length” to determine
the number of parameters supplied.

18Prepared By - Rifat Shahriyar

Using Command‐Line Arguments

java CommandLineTest Hello 2 You

3
Hello

2
You

19Prepared By - Rifat Shahriyar

For-Each

20Prepared By - Rifat Shahriyar

For‐Each version of the for loop

21Prepared By - Rifat Shahriyar

Scanner

22Prepared By - Rifat Shahriyar

Scanner

• It is one of the utility class located in the java.util
package

• Using Scanner class, we can take inputs from the
keyboard

• Provides methods for scanning

– int

– float

– double

– line etc.

23Prepared By - Rifat Shahriyar

Scanner

24Prepared By - Rifat Shahriyar

JOptionPane

25Prepared By - Rifat Shahriyar

Static

26Prepared By - Rifat Shahriyar

Static Variables

• When a member (both methods and variables) is
declared static, it can be accessed before any objects
of its class are created, and without reference to any
object

• Static variable

– Instance variables declared as static are like global
variables

– When objects of its class are declared, no copy of a static
variable is made

27Prepared By - Rifat Shahriyar

Static Methods & Blocks

• Static method

– They can only call other static methods

– They must only access static data

– They cannot refer to this or super in any way

• Static block

– Initialize static variables.

– Get executed exactly once, when the class is first loaded

28Prepared By - Rifat Shahriyar

Static

29Prepared By - Rifat Shahriyar

Final

• Declare a final variable, prevents its contents from
being modified

• final variable must initialize when it is declared

• It is common coding convention to choose all
uppercase identifiers for final variables

final int FILE_NEW = 1;

final int FILE_OPEN = 2;

final int FILE_SAVE = 3;

final int FILE_SAVEAS = 4;

final int FILE_QUIT = 5;

30Prepared By - Rifat Shahriyar

Unsigned right shift operator

• The >> operator automatically fills the high‐order bit
with its previous contents each time a shift occurs

• This preserves the sign of the value

• But if you want to shift something that doesn’t
represent a numeric value, you may not want the
sign extension

• Java’s >>> shifts zeros into the high‐order bit

31

int a= ‐1; a = a >>>24;
11111111 11111111 11111111 11111111 [‐1]
00000000 00000000 00000000 11111111 [255]

Prepared By - Rifat Shahriyar

Nested and Inner Classes

32Prepared By - Rifat Shahriyar

Nested Classes

• It is possible to define a class within another classes,
such classes are known as nested classes

• The scope of nested class is bounded by the scope of
its enclosing class. That means if class B is defined
within class A, then B doesn’t exists without A

• The nested class has access to the members
(including private!) of the class in which it is nested

• The enclosing class doesn’t have access to the
members of the nested class

33Prepared By - Rifat Shahriyar

Static Nested Classes

• Two types of nested classes.

– Static

– Non‐Static

• A static nested class is one which has the static
modifier applied. Because it is static, it must access
the members of its enclosing class through an object

• That is, it cannot refer to members of its enclosing
class directly. Because of this restriction, static
nested classes are seldom used

34Prepared By - Rifat Shahriyar

Static Nested Classes

35Prepared By - Rifat Shahriyar

Inner Classes

• The most important type of nested class is the inner
class

• An inner class is a non‐static nested class

• It has access to all of the variables and methods of its
outer class and may refer to them directly in the
same way that other non‐static members of the
outer class do

• Thus, an inner class is fully within the scope of its
enclosing class

36Prepared By - Rifat Shahriyar

Inner Classes

37Prepared By - Rifat Shahriyar

Inner Classes

38Prepared By - Rifat Shahriyar

Variable Arguments

39Prepared By - Rifat Shahriyar

Variable Arguments Ambiguity

40Prepared By - Rifat Shahriyar

