Java

Introduction

History of Java

e Java was originally developed by Sun Microsystems
starting in 1991

— James Gosling

— Patrick Naughton
— Chris Warth

— Ed Frank

— Mike Sheridan

* This language was initially called Oak
e Renamed Java in 1995

What is Java

* Asimple, object-oriented, distributed, interpreted,
robust, secure, architecture neutral, portable,
high-performance, multithreaded, and dynamic
language -- Sun Microsystems

* Object-Oriented
— No free functions

— All code belong to some class

— Classes are in turn arranged in a hierarchy or package
structure

What is Java

e Distributed

— Fully supports IPv4, with structures to support IPv6
— Includes support for Applets: small programs embedded in
HTML documents
* Interpreted

— The program are compiled into Java Virtual Machine (JVM)
code called bytecode

— Each bytecode instruction is translated into machine code
at the time of execution

What is Java

* Robust

— Java is simple — no pointers/stack concerns

— Exception handling — try/catch/finally series allows for
simplified error recovery

— Strongly typed language — many errors caught during
compilation

Ratings ()

30

25

20

15

10

2002

Java — The Most Popular

2004

2006

TIOBE Programming Community Index

2008

Source: www.tiobe.com

2010 2012

Prepared By - Rifat Shahriyar

== Java
— C
C++
C#
== Python
= JavaScript
PHP
m== Visual Basic .NET
== Assembly language
Ruby

Java Editions

e Java 2 Platform, Standard Edition (J2SE)

— Used for developing Desktop based application and
networking applications

e Java 2 Platform, Enterprise Edition (J2EE)

— Used for developing large-scale, distributed networking
applications and Web-based applications

e Java 2 Platform, Micro Edition (J2ME)

— Used for developing applications for small
memory-constrained devices, such as cell phones, pagers
and PDAs

Java platform

public class Helloworld
{

public static void main(String [] args)

{

System.out.printin(“hello”);

HelloWorld.java Windows NT

o B e
J \F Interpreger

2387D47803

A96C16A484 Java

e | Bytecode ‘
0 Java

Interpreter

(L)
| |
(
| |
)

11

(77
- ’

Power Macintosh

HelloWorld.class

Java Program (Class File)

Java APl

Java Virtual Machine

Y
wope|d eaer

~ Hardware-Based Platform

Prepared By - Rifat Shahriyar

Java Development Environment

Edit
— Create/edit the source code

Compile
— Compile the source code

Load
— Load the compiled code
Verify
— Check against security restrictions

Execute
— Execute the compiled

Phase 1: Creating a Program

Any text editor or Java IDE (Integrated Development
Environment) can be used to develop Java programs

Java source-code file names must end with the .java
extension

Some popular Java IDEs are
— NetBeans

— Eclipse

— JCreator

— Intelli)

Phase 2: Compiling a Java Program

* javac Welcome.java
— Searches the file in the current directory
— Compiles the source file
— Transforms the Java source code into bytecodes
— Places the bytecodes in a file named Welcome.class

Bytecodes *

They are not machine language binary code

They are independent of any particular
microprocessor or hardware platform

They are platform-independent instructions

Another entity (interpreter) is required to convert
the bytecodes into machine codes that the
underlying microprocessor understands

This is the job of the JVM (Java Virtual Machine)

JVM (Java Virtual Machine) *

It is a part of the JDK and the foundation of the Java
platform

It can be installed separately or with JDK

A virtual machine (VM) is a software application that
simulates a computer, but hides the underlying
operating system and hardware from the programs
that interact with the VM

It is the JVM that makes Java a portable language

JVM (Java Virtual Machine) *

The same bytecodes can be executed on any
platform containing a compatible JVM

The JVM is invoked by the java command

— java Welcome

It searches the class Welcome in the current
directory and executes the main method of class
Welcome

It issues an error if it cannot find the class Welcome
or if class Welcome does not contain a method called
main with proper signhature

Phase 3: Loading a Program *

* One of the components of the JVM is the class loader

* The class loader takes the .class files containing the
programs bytecodes and transfers them to RAM

* The class loader also loads any of the .class files
provided by Java that our program uses

Phase 4: Bytecode Verification *

* Another component of the JVM is the bytecode
verifier

* |ts job is to ensure that bytecodes are valid and do
not violate Java’s security restrictions

* This feature helps to prevent Java programs arriving
over the network from damaging our system

Phase 5: Execution

Now the actual execution of the program begins

Bytecodes are converted to machine language
suitable for the underlying OS and hardware

Java programs actually go through two compilation

phases
— Source code -> Bytecodes
— Bytecodes -> Machine language

Editing a Java Program

€" Welcome java

1

2 b public class Welcome {

3 b public static void main(String[] args) {

4 System.out.println("Hello Java");

5 System.out.printf("I like %s\n", "Java");

6 String strDepartment = "CSE";

7 System.out.print("We study in " + strDepartment + "\n");
g } // end method main

9 E // end class Welcome - NOTE: no semicolon 1is required here

10

Prepared By - Rifat Shahriyar

Examining Welcome.java

A Java source file can contain multiple classes, but
only one class can be a public class

Typically Java classes are grouped into packages
(similar to namespaces in C++)

A public class is accessible across packages

The source file name must match the name of the
public class defined in the file with the .java
extension

Examining Welcome.java

In Java, there is no provision to declare a class, and
then define the member functions outside the class

Body of every member function of a class (called
method in Java) must be written when the method is

declared

Java methods can be written in any order in the
source file

A method defined earlier in the source file can call a
method defined later

Examining Welcome.java

* public static void main(String[] args)
— main is the starting point of every Java application
— public is used to make the method accessible by all

— static is used to make main a static method of class
Welcome. Static methods can be called without using any
object; just using the class name. JVM call main using the
ClassName.methodName (Welcome.main) notation

— void means main does not return anything

— String args[] represents an array of String objects that
holds the command line arguments passed to the
application. Where is the length of args array?

Examining Welcome.java

* Think of JVM as a outside Java entity who tries to
access the main method of class Welcome

— main must be declared as a public member of class
Welcome

* JVM wants to access main without creating an object
of class Welcome
— main must be declared as static

e JVM wants to pass an array of String objects
containing the command line arguments

— main must take an array of String as parameter

Examining Welcome.java

e System.out.printin()
— Used to print a line of text followed by a new line
— System is a class inside the Java API
— out is a public static member of class System
— out is an object of another class of the Java API

— out represents the standard output (similar to stdout or
cout)

— println is a public method of the class of which out is an
object

Examining Welcome.java

System.out.print() is similar to System.out.printin(),
but does not print a new line automatically

System.out.printf() is used to print formatted output
like printf() in C

In Java, characters enclosed by double quotes ("")
represents a String object, where String is a class of
the Java API

We can use the plus operator (+) to concatenate
multiple String objects and create a new String
object

Compiling a Java Program

Place the .java file in the bin directory of your Java
installation
— C:\Program Files\Java\jdk1.8.0_144\bin

Open a command prompt window and go to the
bin directory

Execute the following command

— javac Welcome.java

If the source code is ok, then javac (the Java

compiler) will produce a file called Welcome.class in
the current directory

Compiling a Java Program

If the source file contains multiple classes then javac
will produce separate .class files for each class

Every compiled class in Java will have their own .class
file
.class files contain the bytecodes of each class

So, a .class file in Java contains the bytecodes of a
single class only

Executing a Java Program

e After successful compilation execute the following
command
— java Welcome
— Note that we have omitted the .class extension here

 The JVM will look for the class file Welcome.class
and search for a public static void main(String args[
/) method inside the class

e |f the JVM finds the above two, it will execute the
body of the main method, otherwise it will generate
an error and will exit immediately

Another Java Program

€ Ajava

public class A {
private int a;

public A()

{ public static void main(String args[])
this.a = @; {

} A ob;

ob=new A();
ob.setA(1@);

public void setA(int a) System.out.println(ob.getA());

{ }
this.a = a; }

¥

public int getA()

{
return this.a;

¥

Prepared By - Rifat Shahriyar

Examining A.java

The variable of a class type is called a reference
— ob is a reference to A object

Declaring a class reference is not enough, we
have to use new to create an object

Every Java object has to be instantiated using
keyword new

We access a public member of a class using the
dot operator (.)

-
q
— Dot (.) is the only member access operator in Java. Q) N
— Java does not have :;, ->, & and * ~ V

Primitive (built-in) Data types

* Integers
— byte 8-bit integer (new)
— short 16-bit integer
— int 32-bit signed integer
— long 64-bit signed integer

e Real Numbers

— float 32-bit floating-point number
— double 64-bit floating-point number

e Other types

— char 16-bit, Unicode 2.1 character
— boolean true or false, false is not 0 in Java

Boolean Type

€’ Boolean.java

1 b public class Boolean {

2 b

public static void main(String[] args) {
int a = 18;
if (a > @) // if (a) will give compilation error

{
System.out.println("Inside If");

¥
boolean b = false;
if (b)
{
System.out.println("Inside If");
¥
else
{
System.out.println("Inside Else™);
¥

Prepared By - Rifat Shahriyar

Non-primitive Data types

 The non-primitive data types in java are
— Objects
— Array

* Non-primitive types are also called reference types

public class Box {

int L, W, H;
Box(int 1, int w, int h)
{

I =r
o n
J = -

¥

public static void main(String[] args)
Box p; // p is a reference pointing to null
p = new Box(I:1, w: 2, h:3); // now the actual object is created

}
I

Primitive vs. Non-primitive type

* Primitive types are handled by value — the actual
primitive values are stored in variable and passed to
methods

int x = 10;
public MyPrimitive(int x) { }
* Non-primitive data types (objects and arrays) are

handled by reference — the reference is stored in
variable and passed to methods

Box b = new Box(1,2,3);
public MyNonPrimitive(Box x) { }

Primitive vs. Non-primitive type

* Primitive types are handled by value
— There is no easy way to swap two primitive integers in Java
— No method like void swap(int *x, int *y)
— Can only be done using object or array
 But do we actually need a method to swap?
— X+=(y - (y = x)) does the same in a single statement

Java References

Java references are used to point to Java objects
created by new

Java objects are always passed by reference to other
functions, never by value

Java references act as pointers but does not allow
pointer arithmetic

We cannot read the value of a reference and hence
cannot find the address of a Java object

We cannot take the address of a Java reference

Java References

* We can make a Java reference point to a new object
— By copying one reference to another
ClassName ref2 = ref1; // Here ref1 is declared earlier
— By creating a new object and assign it to the reference
ClassName ref1 = new ClassName();
 We cannot place arbitrary values to a reference
except the special value null which means that the
reference is pointing to nothing
ClassName refl = 100; // compiler error
ClassName ref2 = null; // no problem

c Box.java

Java References

1 b» public class Box {

MoO0D s D R WM

Ml B = = = 2 e e e e
= MWD LD s N W B W N =
v
!

int L, W, H;

Box(int 1, int w, int h)

{
L=1;
W= w;
H = h;
¥
public static void main(String[] args)
{
Box bl; // bl refers to null
Box b2; // b2 refers to null
bl = new Box(|: 8, w:5, h:7); // bl refers to new object (8, 5, 7)
b2 = bl; // b2 refers to bl, so both refers (8, 5, 7)
bl = new Box(:3, w:9, h:2); // bl refers to new object (3, 9, 2)
bl = b2; // bl refers to b2, what happens to object (3, 9, 2)
¥

Prepared By - Rifat Shahriyar

Textbook

* We will mostly follow Java 8, if time permits will see
the new features of Java 9
* Books

— Java: The Complete Reference, 9th Edition by Herbert
Schildt

— Effective Java, 2nd edition by Joshua Bloch (for future)

 Web
— http://rifatshahriyar.github.io/CSE107.html

http://rifatshahriyar.github.io/CSE107.html

