
Java

Introduction

History of Java

• Java was originally developed by Sun Microsystems
starting in 1991

– James Gosling

– Patrick Naughton

– Chris Warth

– Ed Frank

– Mike Sheridan

• This language was initially called Oak

• Renamed Java in 1995

Prepared By - Rifat Shahriyar

What is Java

• A simple, object‐oriented, distributed, interpreted,
robust, secure, architecture neutral, portable,
high‐performance, multithreaded, and dynamic
language ‐‐ Sun Microsystems

• Object‐Oriented

– No free functions

– All code belong to some class

– Classes are in turn arranged in a hierarchy or package
structure

Prepared By - Rifat Shahriyar

What is Java

• Distributed

– Fully supports IPv4, with structures to support IPv6

– Includes support for Applets: small programs embedded in
HTML documents

• Interpreted

– The program are compiled into Java Virtual Machine (JVM)
code called bytecode

– Each bytecode instruction is translated into machine code
at the time of execution

Prepared By - Rifat Shahriyar

What is Java

• Robust

– Java is simple – no pointers/stack concerns

– Exception handling – try/catch/finally series allows for
simplified error recovery

– Strongly typed language – many errors caught during
compilation

Prepared By - Rifat Shahriyar

Java – The Most Popular

Prepared By - Rifat Shahriyar

Java Editions

• Java 2 Platform, Standard Edition (J2SE)

– Used for developing Desktop based application and
networking applications

• Java 2 Platform, Enterprise Edition (J2EE)

– Used for developing large‐scale, distributed networking
applications and Web‐based applications

• Java 2 Platform, Micro Edition (J2ME)

– Used for developing applications for small
memory‐constrained devices, such as cell phones, pagers
and PDAs

Prepared By - Rifat Shahriyar

Java platform

public class HelloWorld

{

public static void main(String [] args)

{

System.out.println(“hello”);

}

}

HelloWorld.java

Compile

javac

2387D47803

A96C16A484

54B646F541

06515EE464

HelloWorld.class

Java

Bytecode

Java

Interpreter

Java

Interpreter

Windows NT

Power Macintosh

Java Program (Class File)

Java API

Java Virtual Machine

Hardware-Based Platform

J
a

v
a

P
la

tfo
rm

Prepared By - Rifat Shahriyar

Java Development Environment

• Edit

– Create/edit the source code

• Compile

– Compile the source code

• Load

– Load the compiled code

• Verify

– Check against security restrictions

• Execute

– Execute the compiled
Prepared By - Rifat Shahriyar

Phase 1: Creating a Program

• Any text editor or Java IDE (Integrated Development
Environment) can be used to develop Java programs

• Java source‐code file names must end with the .java
extension

• Some popular Java IDEs are

– NetBeans

– Eclipse

– JCreator

– IntelliJ

Prepared By - Rifat Shahriyar

Phase 2: Compiling a Java Program

• javac Welcome.java

– Searches the file in the current directory

– Compiles the source file

– Transforms the Java source code into bytecodes

– Places the bytecodes in a file named Welcome.class

Prepared By - Rifat Shahriyar

Bytecodes *

• They are not machine language binary code

• They are independent of any particular
microprocessor or hardware platform

• They are platform‐independent instructions

• Another entity (interpreter) is required to convert
the bytecodes into machine codes that the
underlying microprocessor understands

• This is the job of the JVM (Java Virtual Machine)

Prepared By - Rifat Shahriyar

JVM (Java Virtual Machine) *

• It is a part of the JDK and the foundation of the Java
platform

• It can be installed separately or with JDK

• A virtual machine (VM) is a software application that
simulates a computer, but hides the underlying
operating system and hardware from the programs
that interact with the VM

• It is the JVM that makes Java a portable language

Prepared By - Rifat Shahriyar

JVM (Java Virtual Machine) *

• The same bytecodes can be executed on any
platform containing a compatible JVM

• The JVM is invoked by the java command

– java Welcome

• It searches the class Welcome in the current
directory and executes the main method of class
Welcome

• It issues an error if it cannot find the class Welcome
or if class Welcome does not contain a method called
main with proper signature

Prepared By - Rifat Shahriyar

Phase 3: Loading a Program *

• One of the components of the JVM is the class loader

• The class loader takes the .class files containing the
programs bytecodes and transfers them to RAM

• The class loader also loads any of the .class files
provided by Java that our program uses

Prepared By - Rifat Shahriyar

Phase 4: Bytecode Verification *

• Another component of the JVM is the bytecode
verifier

• Its job is to ensure that bytecodes are valid and do
not violate Java’s security restrictions

• This feature helps to prevent Java programs arriving
over the network from damaging our system

Prepared By - Rifat Shahriyar

Phase 5: Execution

• Now the actual execution of the program begins

• Bytecodes are converted to machine language
suitable for the underlying OS and hardware

• Java programs actually go through two compilation
phases

– Source code ‐> Bytecodes

– Bytecodes ‐> Machine language

Prepared By - Rifat Shahriyar

Editing a Java Program

Prepared By - Rifat Shahriyar

Examining Welcome.java

• A Java source file can contain multiple classes, but
only one class can be a public class

• Typically Java classes are grouped into packages
(similar to namespaces in C++)

• A public class is accessible across packages

• The source file name must match the name of the
public class defined in the file with the .java
extension

Prepared By - Rifat Shahriyar

Examining Welcome.java

• In Java, there is no provision to declare a class, and
then define the member functions outside the class

• Body of every member function of a class (called
method in Java) must be written when the method is
declared

• Java methods can be written in any order in the
source file

• A method defined earlier in the source file can call a
method defined later

Prepared By - Rifat Shahriyar

Examining Welcome.java

• public static void main(String[] args)

– main is the starting point of every Java application

– public is used to make the method accessible by all

– static is used to make main a static method of class
Welcome. Static methods can be called without using any
object; just using the class name. JVM call main using the
ClassName.methodName (Welcome.main) notation

– void means main does not return anything

– String args[] represents an array of String objects that
holds the command line arguments passed to the
application. Where is the length of args array?

Prepared By - Rifat Shahriyar

Examining Welcome.java

• Think of JVM as a outside Java entity who tries to
access the main method of class Welcome

– main must be declared as a public member of class
Welcome

• JVM wants to access main without creating an object
of class Welcome

– main must be declared as static

• JVM wants to pass an array of String objects
containing the command line arguments

– main must take an array of String as parameter

Prepared By - Rifat Shahriyar

Examining Welcome.java

• System.out.println()

– Used to print a line of text followed by a new line

– System is a class inside the Java API

– out is a public static member of class System

– out is an object of another class of the Java API

– out represents the standard output (similar to stdout or
cout)

– println is a public method of the class of which out is an
object

Prepared By - Rifat Shahriyar

Examining Welcome.java

• System.out.print() is similar to System.out.println(),
but does not print a new line automatically

• System.out.printf() is used to print formatted output
like printf() in C

• In Java, characters enclosed by double quotes ("")
represents a String object, where String is a class of
the Java API

• We can use the plus operator (+) to concatenate
multiple String objects and create a new String
object

Prepared By - Rifat Shahriyar

Compiling a Java Program

• Place the .java file in the bin directory of your Java
installation

– C:\Program Files\Java\jdk1.8.0_144\bin

• Open a command prompt window and go to the
bin directory

• Execute the following command

– javac Welcome.java

• If the source code is ok, then javac (the Java
compiler) will produce a file called Welcome.class in
the current directory

Prepared By - Rifat Shahriyar

Compiling a Java Program

• If the source file contains multiple classes then javac
will produce separate .class files for each class

• Every compiled class in Java will have their own .class
file

• .class files contain the bytecodes of each class

• So, a .class file in Java contains the bytecodes of a
single class only

Prepared By - Rifat Shahriyar

Executing a Java Program

• After successful compilation execute the following
command

– java Welcome

– Note that we have omitted the .class extension here

• The JVM will look for the class file Welcome.class
and search for a public static void main(String args[
]) method inside the class

• If the JVM finds the above two, it will execute the
body of the main method, otherwise it will generate
an error and will exit immediately

Prepared By - Rifat Shahriyar

Another Java Program

Prepared By - Rifat Shahriyar

Examining A.java

• The variable of a class type is called a reference

– ob is a reference to A object

• Declaring a class reference is not enough, we
have to use new to create an object

• Every Java object has to be instantiated using
keyword new

• We access a public member of a class using the
dot operator (.)

– Dot (.) is the only member access operator in Java.

– Java does not have ::, ->, & and *

Prepared By - Rifat Shahriyar

Primitive (built‐in) Data types

• Integers
– byte 8‐bit integer (new)

– short 16‐bit integer

– int 32‐bit signed integer

– long 64‐bit signed integer

• Real Numbers
– float 32‐bit floating‐point number

– double 64‐bit floating‐point number

• Other types
– char 16‐bit, Unicode 2.1 character

– boolean true or false, false is not 0 in Java

Prepared By - Rifat Shahriyar

Boolean Type

Prepared By - Rifat Shahriyar

Non‐primitive Data types

• The non‐primitive data types in java are

– Objects

– Array

• Non‐primitive types are also called reference types

Prepared By - Rifat Shahriyar

Primitive vs. Non‐primitive type

• Primitive types are handled by value – the actual
primitive values are stored in variable and passed to
methods

int x = 10;

public MyPrimitive(int x) { }

• Non‐primitive data types (objects and arrays) are
handled by reference – the reference is stored in
variable and passed to methods

Box b = new Box(1,2,3);

public MyNonPrimitive(Box x) { }

Prepared By - Rifat Shahriyar

Primitive vs. Non‐primitive type

• Primitive types are handled by value

– There is no easy way to swap two primitive integers in Java

– No method like void swap(int *x, int *y)

– Can only be done using object or array

• But do we actually need a method to swap?

– x += (y - (y = x)) does the same in a single statement

Prepared By - Rifat Shahriyar

Java References

• Java references are used to point to Java objects
created by new

• Java objects are always passed by reference to other
functions, never by value

• Java references act as pointers but does not allow
pointer arithmetic

• We cannot read the value of a reference and hence
cannot find the address of a Java object

• We cannot take the address of a Java reference

Prepared By - Rifat Shahriyar

Java References

• We can make a Java reference point to a new object

– By copying one reference to another

ClassName ref2 = ref1; // Here ref1 is declared earlier

– By creating a new object and assign it to the reference
ClassName ref1 = new ClassName();

• We cannot place arbitrary values to a reference
except the special value null which means that the
reference is pointing to nothing

ClassName ref1 = 100; // compiler error

ClassName ref2 = null; // no problem

Prepared By - Rifat Shahriyar

Java References

Prepared By - Rifat Shahriyar

Textbook

• We will mostly follow Java 8, if time permits will see
the new features of Java 9

• Books

– Java: The Complete Reference, 9th Edition by Herbert
Schildt

– Effective Java, 2nd edition by Joshua Bloch (for future)

• Web

– http://rifatshahriyar.github.io/CSE107.html

Prepared By - Rifat Shahriyar

http://rifatshahriyar.github.io/CSE107.html

