
Java

Inheritance

Inheritance

• Same inheritance concept of C++ in Java with some
modifications

• In Java,

– One class inherits the other using extends keyword

– The classes involved in inheritance are known as
superclass and subclass

– Multilevel inheritance but no multiple inheritance

– There is a special way to call the superclass’s constructor

– There is automatic dynamic method dispatch

2Prepared By - Rifat Shahriyar

Simple Inheritance

3Prepared By - Rifat Shahriyar

Practical Example

4Prepared By - Rifat Shahriyar

Superclass variable reference to
Subclass object

5Prepared By - Rifat Shahriyar

Using super

6Prepared By - Rifat Shahriyar

Using super

7Prepared By - Rifat Shahriyar

Using super

8Prepared By - Rifat Shahriyar

Multilevel Inheritance

9

Inside X's constructor
Inside Y's constructor
Inside Z's constructor

Prepared By - Rifat Shahriyar

Method Overriding

10Prepared By - Rifat Shahriyar

Dynamic Method Dispatch

11Prepared By - Rifat Shahriyar

Abstract Class

• abstract class A

• contains abstract method abstract method f()

• No instance can be created of an abstract class

• The subclass must implement the abstract method

• Otherwise the subclass will be a abstract class too

12Prepared By - Rifat Shahriyar

Abstract Class

13Prepared By - Rifat Shahriyar

Anonymous Subclass

14Prepared By - Rifat Shahriyar

Using final with Inheritance

15

To prevent overriding

To prevent inheritance

Prepared By - Rifat Shahriyar

Object Class

• There is one special class, Object, defined by Java

• All other classes are subclasses of Object

• That is, Object is a superclass of all other classes

• This means that a reference variable of type Object
can refer to an object of any other class

• Also, since arrays are implemented as classes, a
variable of type Object can also refer to any array

16Prepared By - Rifat Shahriyar

Object’s toString()

• The toString() method returns a string that contains
a description of the object on which it is called

• Also, this method is automatically called when an
object is output using println()

• Many classes override this method

• Doing so allows them to provide a description
specifically for the types of objects that they create

17Prepared By - Rifat Shahriyar

Object’s toString()

18Prepared By - Rifat Shahriyar

Object’s equals() and hashCode()

• == is a reference comparison, whether both
variables refer to the same object

• Object’s equals() method does the same thing

• String class override equals() to check contents

• If you want two different objects of a same class to
be equal then you need to override equals() and
hashCode() methods

– hashCode() needs to return same value to work properly
as keys in Hash data structures

19Prepared By - Rifat Shahriyar

Object’s equals() and hashCode()

20Prepared By - Rifat Shahriyar

