
Java

Inheritance



Inheritance

• Same inheritance concept of C++ in Java with some 
modifications

• In Java,

– One class inherits the other using extends keyword

– The classes involved in inheritance are known as 
superclass and subclass

– Multilevel inheritance but no multiple inheritance

– There is a special way to call the superclass’s constructor

– There is automatic dynamic method dispatch
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Simple Inheritance
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Practical Example
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Superclass variable reference to 
Subclass object
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Using super

6Prepared By - Rifat Shahriyar



Using super
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Using super
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Multilevel Inheritance
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Inside X's constructor
Inside Y's constructor
Inside Z's constructor
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Method Overriding
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Dynamic Method Dispatch
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Abstract Class

• abstract class A

• contains abstract method abstract method f()

• No instance can be created of an abstract class

• The subclass must implement the abstract method

• Otherwise the subclass will be a abstract class too
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Abstract Class
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Anonymous Subclass
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Using final with Inheritance
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To prevent overriding

To prevent inheritance
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Object Class

• There is one special class, Object, defined by Java

• All other classes are subclasses of Object

• That is, Object is a superclass of all other classes

• This means that a reference variable of type Object 
can refer to an object of any other class

• Also, since arrays are implemented as classes, a 
variable of type Object can also refer to any array
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Object’s toString()

• The toString( ) method returns a string that contains 
a description of the object on which it is called

• Also, this method is automatically called when an 
object is output using println()

• Many classes override this method

• Doing so allows them to provide a description 
specifically for the types of objects that they create
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Object’s toString()
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Object’s equals() and hashCode()

• == is a reference comparison, whether both 
variables refer to the same object

• Object’s equals() method does the same thing 

• String class override equals() to check contents

• If you want two different objects of a same class to 
be equal then you need to override equals() and 
hashCode() methods

– hashCode() needs to return same value to work properly 
as keys in Hash data structures
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Object’s equals() and hashCode()
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