Java

Package, Interface & Exception

Package

Package

Java package provides a mechanism for partitioning
the class name space into more manageable chunks

— Both naming and visibility control mechanism

Define classes inside a package that are not
accessible by code outside that package

Define class members that are exposed only to other
members of the same package

This allows classes to have intimate knowledge of
each other

— Not expose that knowledge to the rest of the world

Declaring Package

package pkg

— Here, pkg is the name of the package
package mypackage

— creates a package called mypackage

The package statement defines a name space in
which classes are stored

If you omit the package statement, the class names
are put into the default package, which has no name

Declaring Package

Java uses file system directories to store packages

— the .class files for any classes that are part of mypackage
must be stored in a directory called mypackage

More than one file can include the same package
statement

The package statement simply specifies to which
package the classes defined in a file belong

To create hierarchy of packages, separate each
package name from the one above it by use of a (.)

Package Example

package mypackage;

class Balance {

String name; javac -d . AccountBalance.java
double bal;
Balance(String n, double b) {

e java mypackage.AccountBalance
3
void show() {
System.out.println(name + ": $" + bal);
I3

t
public class AccountBalance {
public static void main(String[] args) {
Balance [] current = new Balance[3];
current[0] new Balance(n: "K. J. Fielding", b: 123.23);
current[1] new Balance(n: "Will Tell", b: 157.02);
current[2] new Balance(n: "Tom Jackson™, b: -12.33);
for (Balance b : current) {
b.show();

Prepared By - Rifat Shahriyar 6

Package Syntax

 The general form of a multilevel package statement
— package pkgl[.pkg2[.pkg3]]
— package java.util.concurrent
e import statements occur immediately following the
package statement and before any class definitions
 The general form of the import statement
— import pkgl [.pkg2].(classname | *)
— import java.util.Scanner

— import statement is optional, class can be used with name
that includes full package hierarchy

Access Protection

Packages act as containers for classes and other
subordinate packages

Classes act as containers for data and code
The class is Java’s smallest unit of abstraction

Four categories of visibility for class members
— Subclasses in the same package

— Non-subclasses in the same package

— Subclasses in different package

— Classes that are neither in the same package nor
subclasses

Access Protection

* The three access modifiers provide a variety of ways
to produce the many levels of access required

— private, public, and protected

* The following applies only to members of classes

Private No Modifier Protected Public

Same class Yes Yes Yes Yes
Same package subclass No Yes Yes Yes
Same package non-subclass No Yes Yes Yes
Different package subclass No No Yes Yes
Different package non-subclass No No No Yes

For detail example, please refer to codes in package pl and p2

Access Protection

Anything declared public can be accessed from
anywhere

Anything declared private cannot be seen outside of
its class

When a member does not have an explicit access
specification, it is visible to subclasses as well as to
other classes in the same package (default access)

If you want to allow an element to be seen outside
your current package, but only to classes that
subclass the class directly, declare that protected

Access Protection

A non-nested class has only two possible access
levels

— default and public (others are abstract and final)

When a class is declared as public, it is accessible by
any other code

If a class has default access, then it can only be
accessed by other code within its same package

When a class is public, it must be the only public
class declared in the file, and the file must have the
same name as the class

Interface

Interface

* We can call it a pure abstract class having no
concrete methods

— All methods declared in an interface are implicitly public
and abstract

— All variables declared in an interface are implicitly public,
static and final

* An interface can’t have instance variables, so can’t
maintain state information unlike class

* A class can only extend from a single class, but a
class can implement multiple interfaces

Implementing Interface

* When you implement an interface method, it must
be declared as public

* By implementing an interface, a class signs a contract
with the compiler that it will definitely provide
implementation of all the methods

— If it fails to do so, the class will be considered as abstract
— Then it must be declared as abstract and no object of that
class can be created
* An abstract class specifies what an object is and an
interface specifies what the object can do

Simple Interface

interface Callback {
void call(int param);

class Client implements Callback {
public void call{int p) {
System.out.println(“call method called with " + p);
}
public void f() {
System.out.println(“simple method, not related with Callback");

}
public class InterfaceTest {
public static void main(String[] args) {

/4 Error, Callback is abstract, can't be instantiated
S/ callback ¢ = new cCallback()};
A4 Can't Instantiate an Interface directly
Client client = new Client();
client.call(p 42);
client.f();
/7 Accessing implementations through Interface reference
Callback cb = new Client();
cb.call(param: 84);

]

A ch.f(); Error, no such method in Callback

Prepared By - Rifat Shahriyar 15

Simple Interface

interface callback {
void call(int param);

public class InterfaceTest {
public static void main(Stringl] args) {
A7 Anonymous class that implements Callback, introduced in Java 8
Callback callback = new Callback() {
poverride
public void call(int param) {
System.out.println(“call method called with " + param);

};
callback.call(param: 18);

Prepared By - Rifat Shahriyar

16

B @

) st @

Applying Interfaces

interface MyInterface {
void print(String msg);

class MyClassl implements MyInterface {
public void print(String msg) {

System.out.println(msg + + msg.length());

class MyClass? implements MyInterface {
public void print(String msg) {
System.out.println(msg.length() +

+ msg);

}
public class InterfaceApplyTest {

public static void main(Stringl] args) {
MyClassl mcl = new MyClassl();
MyClass2 mc2 = new MyClass2();
MyInterface mi; // create an interface reference variable
mi = mcl;
i.print({“Hello World");
= mc2;
i.print({“Hello World");

=
(S~

=
=

Prepared By - Rifat Shahriyar 17

Nested or Member Interfaces

class A {
// non-nested interfaces can be default or public
// nested interfaces can be private/protected/public/default
interface NestedIF {
boolean isNonNegative(int x);

class B implements A.NestedIF {
public boolean isNonNegative(int x) { return x >= 0; }
}
public class InterfaceNestedTest {
public static void main(String[] args) {
A.NestedIF nif = new B();
System.out.println(nif.isNonNegative(x 100));
System.out.println(nif.isNonNegative(x -10));

Prepared By - Rifat Shahriyar

18

Variables in Interfaces

import java.util.Random;

interface SharedConstants {
int NO = 1;
int YES = 2;

class Question implements SharedConstants {
Random rand = new Random();
int ask() {
int prob = (int) (100 * rand.nextDouble());
if (prob < 50) return NO;
else return YES;

}
public class InterfaceVariableTest {
public static void main(String[] args) {
Question q = new Question();
for (int i = 0; 1 < 10; i++) {

System.out.printin(q.ask());

Prepared By - Rifat Shahriyar

19

Extending Interfaces

interface I1 {

void f1();
}
interface 12 {
void 2();
}

interface I3 extends I1, I2 {
void f3();

}

class MyClass implements I3 {
public void f1() { System.out.println("Implement f1"); }
public void f2() { System.out.printin("Implement f2"); }
public void f3() { System.out.println("Implement f3"); }

public class InterfaceExtendsTest {
public static void main(String[] args) {
MyClass m = new MyClass();
m.f1();
m.f2();
m.f3();

i

Prepared By - Rifat Shahriyar

20

Default Interface Methods

* Prior to Java 8, an interface could not define any
implementation whatsoever

* The release of Java 8 has changed this by adding a
new capability to interface called the default method

— A default method lets you define a default implementation
for an interface method

— Its primary motivation was to provide a means by which

interfaces could be expanded without breaking existing
code

Default Interface Methods

1 ®| interface MyIF {
2 // This is a "normal" interface method declaration.
I int getNumber();
4 // This is a default method. Notice that it provides
// a default implementation.
6 default String getString() { return "Default String"; }

11 class MyIFImp implements MyIF {

12 // 0Only getNumber() defined by MyIF needs to be implemented.

13 // getString() can be allowed to default.
14 of public int getNumber() { return 100; }

19 » public class InterfaceDefaultMethodTest {

20 b public static void main(String[] args) {
21 MyIFImp m = new MyIFImp();

22 System.out.println(m.getNumber());
23 System.out.println(m.getString());

Prepared By - Rifat Shahriyar

22

Multiple Inheritance Issues

3® interface Alpha { 3% interface Alpha {

49 default void reset() { 4 8] default void reset() {

5 System.out.println("Alpha's reset"); 5 System.out.println("Alpha's reset");
6 } 6 }

7 } 7 }

g 8

13 @t mtegz?‘:;ieigié reset() 1 9@ interface Beta extends Alpha {

11 System.out.println("Beta's reset"); 10 < default void PEEEFO i ; . ;
12 } 11 System.out.println("Beta's reset");
13 } 12 A Alpha. super. reset();

14 13 }

15 class Test(Class implements Alpha, Beta { 14 }

16 af public void reset() { 15

17 System.out.println("Test(lass's reset"); 16 class TestClass implements Beta {

18 } 17

19 } 18}

Prepared By - Rifat Shahriyar 23

Static Methods in Interface

interface MyIFStatic {
int getNumber();

default String getString() {
return "Default String”;

// This is a static interface method (introduced in Java 8)
// not inherited by either an implementing class or a subinterface.
static int getDefaultNumber() {

return 0,

v

public class InterfaceStaticMethodTest {
public static void main(String[] args) {
System.out.println(MyIFStatic.getDefaultNumber());

v

Prepared By - Rifat Shahriyar 24

i

>

Private Methods in Interface

interface MyIFPrivate {
default String f1() {
login();
return "Hello";

}

default String f2() {
login();
return "World";

}

// This 1is a private interface method (introduced in Java 9)
// can be called only by a default method or another private method of the same interface
private void login() {

System.out.println("login");

t
}
class MyIFPrivateImp implements MyIFPrivate {
}

public class InterfacePrivateMethodTest {
public static void main(String[] args) {
MyIFPrivate ifp = new MyIFPrivateImp();
System.out.println(ifp.f1());
System.out.println(ifp.fZ())d

Prepared By - Rifat Shahriyar

25

Exception

Exception Handling

* When an exceptional condition arises, an object
representing that exception is created and thrown in
the method that caused the error

— That method may choose to handle the exception or pass
it on (caught and processed at some point)

* Generated by the Java runtime or by your code

— Exceptions thrown by Java relate to fundamental errors
that violate the rules of the Java language or the
constraints of the Java execution environment

— Manually generated exceptions are typically used to report
some error condition to the caller of a method

Exception Handling

e Java exception handling is managed via five keywords

— Program statements that you want to monitor for
exceptions are contained within a try block

— If an exception occurs within the try block, it is thrown
— Your code can catch this exception (using catch)
— To manually throw an exception, use the keyword throw

— Any exception that is thrown out of a method must be
specified as such by a throws clause

— Any code that absolutely must be executed after a try
block completes is put in a finally block

Exception Classes Hierarchy

Object
F 9
Throwable
Exceptions Errors
T T A
—— StackOverFlowError
Check Exceptions Uncheck Exceptions : :
—— VirtualMachineError
-~ -~
—— OutOfMemoryError
— IOException — ArithmeticException
— SQLException — NullPointerException
— ClassNotFoundException — IndexQutOfBoundsException

ArraylndexOutOfBoundsExcpetion

stringindexOutOfBoundsExcpetion

Image Source: https://simplesnippets.tech/exception-handling-in-java-part-1/

Complete List of Java Exceptions: https://programming.quide/java/list-of-java-exceptions.html

Prepared By - Rifat Shahriyar 29

https://simplesnippets.tech/exception-handling-in-java-part-1/
https://programming.guide/java/list-of-java-exceptions.html

Uncaught Exceptions

public class ExceptionUncaught {
public static void main(String args[]) {

int a = 10, b = 0;
int ¢ = a / b; // ArithmeticException: / by zero
System.out.println(a);
System.out.println(b);
System.out.println(c);
String s = null;
System.out.println(s.length()); // NullPointerException

Prepared By - Rifat Shahriyar 30

Caught Exceptions

public class ExceptionCaughtl {
public static void main(String args[]) {
inta=10, b =0, c = 0;

try {
// try requires at least one catch or a finally clause
c=al/p;

System.out.println("This will never print");

} catch (Exception e) { // ArithmeticException
System.out.println("In Catch");
System.out.println(e);

} finally {
// finally block is optional
// finally block will always execute
System.out.println("In Finally");

}

System.out.println(a);

System.out.println(b);

System.out.println(c);

Prepared By - Rifat Shahriyar

31

Caught Exceptions

import java.util.Random;

» public class ExceptionCaught3 {

I public static void main(String args[]) {
int a = 10, b, c;
Random r = new Random();
for (int i = 1; i <= 32000; i++)

try {
b = r.nextInt();
c = r.nextInt();
a = 12345 / (b / ¢c);

} catch (ArithmeticException e) {
System.out.println(e);
a = 0;

} finally {
System.out.println(i +

m, w
.

+a);

}

}
try can be nested, please refer to ExceptionTryNested.java

Prepared By - Rifat Shahriyar 32

finally

public class ExceptionCaught2 {
public static void main(String args[]) {
int a = 106, b = 0, c;
try {
c =a/b;
System.out.println("This will never print");
} catch (Exception e) { // ArithmeticException
System.out.println("In Catch");
System.out.printiln(e);
return;
} finally {
// finally block will always execute
System.out.println("In Finally");
t
System.out.println(a);
System.out.println(b);
System.out.println(c);

Prepared By - Rifat Shahriyar

33

|
| 4

Multiple catch clauses

public class ExceptionMultipleCatch {
public static void main(String args[]) {

int a =10, b =0, c =
try {

} catch (ArithmeticExce

Q5

ption el) {

System.out.println(el);
} catch (NullPointerException e2) {
System.out.println(e2);

} catch (Exception e) {
System.out.println(

} finally { catch(ArithmeticException | Exception e) - Error

System.out.println(
}
System.out.println(a);
System.out.println(b);
System.out.println(c);

e);

"In Finally");

Prepared By - Rifat Shahriyar

c =a/b; catch(ArithmeticException | NullPointerException e)

34

—

throw

public class ExceptionThrow {
public static void f() {
try {
throw new NullPointerException("f");
} catch(NullPointerException e) {
System.out.println("Inside catch of f()");
throw e; //rethrow the exception

}
}
public static void main(String args[]) {
try {
f();
} catch(NullPointerException e) {
System.out.println("Inside catch of main()");
}
}

Prepared By - Rifat Shahriyar

35

| 4

throws

public class ExceptionThrows {
public static void f() throws IllegalAccessException {
System.out.println("Inside f()");
throw new IllegalAccessException("f");

}
public static void main(String args[]) {
try {
f();

} catch (IllegalAccessException e) {
System.out.println("Inside catch of main()");
e.printStackTrace();

}
}

throws listing is not required for those of
RuntimeException or any of their subclasses

Prepared By - Rifat Shahriyar

36

Custom Exceptions

class MyException extends Exception {
private int detail;
MyException(int a) { detail = a; }
o0verride
public String toString() { return "My Exception : " + detail; }

public class ExceptionCustom {
static void compute(int a) throws MyException {
if (a > 10) {
throw new MyException(a);

}
System.out.println(a);
}
public static void main(String args[]) {
try {
compute(a 10);
compute(a 20);
} catch (MyException e) {
System.out.println(e);
}
}

i

Prepared By - Rifat Shahriyar

37

