
Java

Package, Interface & Exception

Package

2Prepared By - Rifat Shahriyar

Package

• Java package provides a mechanism for partitioning
the class name space into more manageable chunks

– Both naming and visibility control mechanism

• Define classes inside a package that are not
accessible by code outside that package

• Define class members that are exposed only to other
members of the same package

• This allows classes to have intimate knowledge of
each other

– Not expose that knowledge to the rest of the world

3Prepared By - Rifat Shahriyar

Declaring Package

• package pkg

– Here, pkg is the name of the package

• package mypackage

– creates a package called mypackage

• The package statement defines a name space in
which classes are stored

• If you omit the package statement, the class names
are put into the default package, which has no name

4Prepared By - Rifat Shahriyar

Declaring Package

• Java uses file system directories to store packages

– the .class files for any classes that are part of mypackage
must be stored in a directory called mypackage

• More than one file can include the same package
statement

• The package statement simply specifies to which
package the classes defined in a file belong

• To create hierarchy of packages, separate each
package name from the one above it by use of a (.)

5Prepared By - Rifat Shahriyar

Package Example

6Prepared By - Rifat Shahriyar

javac -d . AccountBalance.java

java mypackage.AccountBalance

Package Syntax

• The general form of a multilevel package statement

– package pkg1[.pkg2[.pkg3]]

– package java.util.concurrent

• import statements occur immediately following the
package statement and before any class definitions

• The general form of the import statement

– import pkg1 [.pkg2].(classname | *)

– import java.util.Scanner

– import statement is optional, class can be used with name
that includes full package hierarchy

7Prepared By - Rifat Shahriyar

Access Protection

• Packages act as containers for classes and other
subordinate packages

• Classes act as containers for data and code

• The class is Java’s smallest unit of abstraction

• Four categories of visibility for class members

– Subclasses in the same package

– Non-subclasses in the same package

– Subclasses in different package

– Classes that are neither in the same package nor
subclasses

8Prepared By - Rifat Shahriyar

Access Protection

• The three access modifiers provide a variety of ways
to produce the many levels of access required

– private, public, and protected

• The following applies only to members of classes

9

Private No Modifier Protected Public

Same class Yes Yes Yes Yes

Same package subclass No Yes Yes Yes

Same package non-subclass No Yes Yes Yes

Different package subclass No No Yes Yes

Different package non-subclass No No No Yes

Prepared By - Rifat Shahriyar

For detail example, please refer to codes in package p1 and p2

Access Protection

• Anything declared public can be accessed from
anywhere

• Anything declared private cannot be seen outside of
its class

• When a member does not have an explicit access
specification, it is visible to subclasses as well as to
other classes in the same package (default access)

• If you want to allow an element to be seen outside
your current package, but only to classes that
subclass the class directly, declare that protected

10Prepared By - Rifat Shahriyar

Access Protection

• A non-nested class has only two possible access
levels

– default and public (others are abstract and final)

• When a class is declared as public, it is accessible by
any other code

• If a class has default access, then it can only be
accessed by other code within its same package

• When a class is public, it must be the only public
class declared in the file, and the file must have the
same name as the class

11Prepared By - Rifat Shahriyar

Interface

12Prepared By - Rifat Shahriyar

Interface

• We can call it a pure abstract class having no
concrete methods

– All methods declared in an interface are implicitly public
and abstract

– All variables declared in an interface are implicitly public,
static and final

• An interface can’t have instance variables, so can’t
maintain state information unlike class

• A class can only extend from a single class, but a
class can implement multiple interfaces

13Prepared By - Rifat Shahriyar

Implementing Interface

• When you implement an interface method, it must
be declared as public

• By implementing an interface, a class signs a contract
with the compiler that it will definitely provide
implementation of all the methods

– If it fails to do so, the class will be considered as abstract

– Then it must be declared as abstract and no object of that
class can be created

• An abstract class specifies what an object is and an
interface specifies what the object can do

14Prepared By - Rifat Shahriyar

Simple Interface

15Prepared By - Rifat Shahriyar

Simple Interface

16Prepared By - Rifat Shahriyar

Applying Interfaces

17Prepared By - Rifat Shahriyar

Nested or Member Interfaces

18Prepared By - Rifat Shahriyar

Variables in Interfaces

19Prepared By - Rifat Shahriyar

Extending Interfaces

20Prepared By - Rifat Shahriyar

Default Interface Methods

• Prior to Java 8, an interface could not define any
implementation whatsoever

• The release of Java 8 has changed this by adding a
new capability to interface called the default method

– A default method lets you define a default implementation
for an interface method

– Its primary motivation was to provide a means by which
interfaces could be expanded without breaking existing
code

21Prepared By - Rifat Shahriyar

Default Interface Methods

22Prepared By - Rifat Shahriyar

Multiple Inheritance Issues

23Prepared By - Rifat Shahriyar

Static Methods in Interface

24Prepared By - Rifat Shahriyar

Private Methods in Interface

25Prepared By - Rifat Shahriyar

Exception

26Prepared By - Rifat Shahriyar

Exception Handling

• When an exceptional condition arises, an object
representing that exception is created and thrown in
the method that caused the error

– That method may choose to handle the exception or pass
it on (caught and processed at some point)

• Generated by the Java runtime or by your code

– Exceptions thrown by Java relate to fundamental errors
that violate the rules of the Java language or the
constraints of the Java execution environment

– Manually generated exceptions are typically used to report
some error condition to the caller of a method

27Prepared By - Rifat Shahriyar

Exception Handling

• Java exception handling is managed via five keywords

– Program statements that you want to monitor for
exceptions are contained within a try block

– If an exception occurs within the try block, it is thrown

– Your code can catch this exception (using catch)

– To manually throw an exception, use the keyword throw

– Any exception that is thrown out of a method must be
specified as such by a throws clause

– Any code that absolutely must be executed after a try
block completes is put in a finally block

28Prepared By - Rifat Shahriyar

Exception Classes Hierarchy

Prepared By - Rifat Shahriyar 29

Image Source: https://simplesnippets.tech/exception-handling-in-java-part-1/

Complete List of Java Exceptions: https://programming.guide/java/list-of-java-exceptions.html

https://simplesnippets.tech/exception-handling-in-java-part-1/
https://programming.guide/java/list-of-java-exceptions.html

Uncaught Exceptions

30Prepared By - Rifat Shahriyar

Caught Exceptions

31Prepared By - Rifat Shahriyar

Caught Exceptions

32Prepared By - Rifat Shahriyar

try can be nested, please refer to ExceptionTryNested.java

finally

33Prepared By - Rifat Shahriyar

Multiple catch clauses

34Prepared By - Rifat Shahriyar

catch(ArithmeticException | NullPointerException e)

catch(ArithmeticException | Exception e) - Error

throw

35Prepared By - Rifat Shahriyar

throws

36Prepared By - Rifat Shahriyar

throws listing is not required for those of
RuntimeException or any of their subclasses

Custom Exceptions

37Prepared By - Rifat Shahriyar

