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Package

• Java package provides a mechanism for partitioning 
the class name space into more manageable chunks 

– Both naming and visibility control mechanism

• Define classes inside a package that are not 
accessible by code outside that package

• Define class members that are exposed only to other 
members of the same package

• This allows classes to have intimate knowledge of 
each other

– Not expose that knowledge to the rest of the world
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Declaring Package

• package pkg

– Here, pkg is the name of the package

• package mypackage

– creates a package called mypackage

• The package statement defines a name space in 
which classes are stored

• If you omit the package statement, the class names 
are put into the default package, which has no name 
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Declaring Package

• Java uses file system directories to store packages

– the .class files for any classes that are part of mypackage
must be stored in a directory called mypackage

• More than one file can include the same package 
statement

• The package statement simply specifies to which 
package the classes defined in a file belong

• To create hierarchy of packages, separate each 
package name from the one above it by use of a (.)
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Package Example
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javac  -d  .  AccountBalance.java

java  mypackage.AccountBalance



Package Syntax

• The general form of a multilevel package statement

– package pkg1[.pkg2[.pkg3]]

– package java.util.concurrent

• import statements occur immediately following the 
package statement and before any class definitions

• The general form of the import statement

– import pkg1 [.pkg2].(classname | *)

– import java.util.Scanner

– import statement is optional, class can be used with name 
that includes full package hierarchy
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Access Protection

• Packages act as containers for classes and other 
subordinate packages

• Classes act as containers for data and code

• The class is Java’s smallest unit of abstraction

• Four categories of visibility for class members

– Subclasses in the same package

– Non-subclasses in the same package

– Subclasses in different package 

– Classes that are neither in the same package nor 
subclasses
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Access Protection

• The three access modifiers provide a variety of ways 
to produce the many levels of access required 

– private, public, and protected

• The following applies only to members of classes

9

Private No Modifier Protected Public 

Same class Yes Yes Yes Yes 

Same package subclass No Yes Yes Yes 

Same package non-subclass No Yes Yes Yes 

Different package subclass No No Yes Yes 

Different package non-subclass No No No Yes 
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For detail example, please refer to codes in package p1 and p2



Access Protection

• Anything declared public can be accessed from 
anywhere

• Anything declared private cannot be seen outside of 
its class

• When a member does not have an explicit access 
specification, it is visible to subclasses as well as to 
other classes in the same package (default access)

• If you want to allow an element to be seen outside 
your current package, but only to classes that 
subclass the class directly, declare that protected
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Access Protection

• A non-nested class has only two possible access 
levels

– default and public (others are abstract and final)

• When a class is declared as public, it is accessible by 
any other code

• If a class has default access, then it can only be 
accessed by other code within its same package

• When a class is public, it must be the only public 
class declared in the file, and the file must have the 
same name as the class
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Interface

12Prepared By - Rifat Shahriyar



Interface

• We can call it a pure abstract class having no 
concrete methods

– All methods declared in an interface are implicitly public
and abstract

– All variables declared in an interface are implicitly public, 
static and final

• An interface can’t have instance variables, so can’t 
maintain state information unlike class

• A class can only extend from a single class, but a 
class can implement multiple interfaces
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Implementing Interface

• When you implement an interface method, it must 
be declared as public

• By implementing an interface, a class signs a contract 
with the compiler that it will definitely provide 
implementation of all the methods

– If it fails to do so, the class will be considered as abstract

– Then it must be declared as abstract and no object of that 
class can be created

• An abstract class specifies what an object is and an 
interface specifies what the object can do
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Simple Interface 
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Simple Interface 
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Applying Interfaces
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Nested or Member Interfaces
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Variables in Interfaces
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Extending Interfaces
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Default Interface Methods

• Prior to Java 8, an interface could not define any 
implementation whatsoever

• The release of Java 8 has changed this by adding a 
new capability to interface called the default method

– A default method lets you define a default implementation 
for an interface method

– Its primary motivation was to provide a means by which 
interfaces could be expanded without breaking existing 
code
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Default Interface Methods
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Multiple Inheritance Issues
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Static Methods in Interface
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Private Methods in Interface
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Exception
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Exception Handling

• When an exceptional condition arises, an object 
representing that exception is created and thrown in 
the method that caused the error

– That method may choose to handle the exception or pass 
it on (caught and processed at some point)

• Generated by the Java runtime or by your code 

– Exceptions thrown by Java relate to fundamental errors 
that violate the rules of the Java language or the 
constraints of the Java execution environment

– Manually generated exceptions are typically used to report 
some error condition to the caller of a method
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Exception Handling

• Java exception handling is managed via five keywords 

– Program statements that you want to monitor for 
exceptions are contained within a try block

– If an exception occurs within the try block, it is thrown

– Your code can catch this exception (using catch)

– To manually throw an exception, use the keyword throw

– Any exception that is thrown out of a method must be 
specified as such by a throws clause

– Any code that absolutely must be executed after a try 
block completes is put in a finally block
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Exception Classes Hierarchy
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Image Source: https://simplesnippets.tech/exception-handling-in-java-part-1/

Complete List of Java Exceptions: https://programming.guide/java/list-of-java-exceptions.html

https://simplesnippets.tech/exception-handling-in-java-part-1/
https://programming.guide/java/list-of-java-exceptions.html


Uncaught Exceptions
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Caught Exceptions
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Caught Exceptions
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try can be nested, please refer to ExceptionTryNested.java



finally 
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Multiple catch clauses
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catch(ArithmeticException | NullPointerException e)

catch(ArithmeticException | Exception e) - Error



throw 
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throws
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throws listing is not required for those of 
RuntimeException or any of their subclasses



Custom Exceptions
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