
Java

I/O

File

• Long‐term storage of large amounts of data

• Persistent data exists after termination of program

• Files stored on secondary storage devices

– Magnetic disks

– Optical disks

– Magnetic tapes

• Sequential and random access files

2Prepared By - Rifat Shahriyar

File Class

• Provides useful information about a file or directory

• Does not open files or process files

• To obtain or manipulate path, time, date,
permissions etc

• Constructor

– File(String directoryPath)

– File(String directoryPath, String fileName)

– File(File dirObj, String fileName)

• Example: FileDemo.java

3Prepared By - Rifat Shahriyar

Directory Class

• Directories are also files

• Contains list of files and directories

• For Directory isDirectory() returns true

String[] list()

– returns an array of strings that gives the files and
directories contained

File[] listFiles()

– Returns array of File objects

• Example: DirectoryDemo.java

4Prepared By - Rifat Shahriyar

Stream Classes

• Java views a File as a stream of bytes.

– File ends with end‐of‐file marker or a specific byte number

– File as a stream of bytes associated with an object.

– Java also associates streams with devices

• System.in, System.out, and System.err

– Streams can be redirected

• Stream is an abstraction that either produces or
consumes information

5Prepared By - Rifat Shahriyar

Stream Classes

• Java’s stream‐based I/O is built upon four abstract
classes.

– InputStream, OutputStream (for byte streams)

– Reader, Writer (for character streams)

• They form separate hierarchies

• Use the character stream classes when working
with characters or strings

• Use the byte stream classes when working with
bytes or other binary objects

6Prepared By - Rifat Shahriyar

Byte Stream Classes

• Topped by InputStream and OutputStream classes

• InputStream is an abstract class that defines Java’s
model of streaming byte input.

int available() void close() int read()

int read(byte buff[]) int read(byte buff[], int off, int num)

• OutputStream is an abstract class that defines Java’s
model of streaming byte output.

void flush() void close() void write(int b)

void write(byte buff[]) void write(byte buff[], int off, int num)

7Prepared By - Rifat Shahriyar

FileInputStream

• FileInputStream class creates an InputStream that
you can use to read bytes from a file

• Constructors

– FileInputStream(String filePath)

– FileInputStream(File fileObj)

• Example: FileInputStreamDemo.java

8Prepared By - Rifat Shahriyar

FileOutputStream

• FileOutputStream class creates an OutputStream
that you can use to write bytes to a file

• Constructors

– FileOutputStream(String filePath)

– FileOutputStream(File fileObj)

– FileOutputStream(String path, boolean append)

– FileOutputStream(File obj, boolean append)

• Example: FileOutputStreamDemo.java, FileCopyDemo.java

9Prepared By - Rifat Shahriyar

Character Stream Classes

• Topped by Reader and Writer classes

• Reader is an abstract class that defines Java’s model
of streaming character input

void close() int read() int read(char buff[])

int read(char buff[], int off, int num)

• Writer is an abstract class that defines Java’s model
of streaming character output

void flush() void close() void write(int ch)

void write(char buff[]) void write(char buff[], int off, int num)

void write(String s) void write(String s, int off, int num)

10Prepared By - Rifat Shahriyar

FileReader

• FileReader class creates a Reader that you can use to
read the contents of a file

• Constructors

– FileReader(String filePath)

– FileReader(File fileObj)

• Example: FileReaderDemo.java

11Prepared By - Rifat Shahriyar

FileWriter

• FileWriter class creates a Writer that you can use to
write to a file

• Constructors

– FileWriter(String filePath)

– FileWriter(File fileObj)

– FileWriter(String path, boolean append)

– FileWriter(File obj, boolean append)

• Example: FileWriterDemo.java

12Prepared By - Rifat Shahriyar

BufferedReader

• BufferedReader is a Reader that buffers input

• It improves performance by reducing the number of
times data us actually physically read from the input
stream

• Constructors

– BufferedReader(Reader reader)

– BufferedReader(Reader reader, int buffSize)

• Example: BufferedReaderDemo.java

13Prepared By - Rifat Shahriyar

BufferedWriter

• BufferedWriter is a Writer that buffers output

• It improves performance by reducing the number of
times data actually physically written to the output
stream

• Constructors

– BufferedWriter(Writer writer)

– BufferedWriter(Writer writer, int buffSize)

• Example: BufferedWriterDemo.java

14Prepared By - Rifat Shahriyar

Serialization

• Serialization is the process of writing the state of an
object to a byte stream

– This is useful when you want to save the state of your
program to a persistent storage such as file

– Later these objects can be restored by using the process of
deserialization

• Serialization can be achieved by implementing
Serializable interface

15Prepared By - Rifat Shahriyar

Object(Input/Output)Stream

• ObjectInputStream class extends the InputStream
class

• It is responsible for reading objects from a stream

• ObjectOutputStream class extends the
OutputStream class

• It is responsible for writing objects to a stream

• Example: ObjectSerializationDemo.java

16Prepared By - Rifat Shahriyar

Data(Input/Output)Stream

• DataInputStream & DataOutputStream enable to
write or read primitive data to or from a stream

• They implement the DataOutput & DataInput
interfaces respectively

• Constructors

– DataOutputStream(OutputStream os)

– DataInputStream(InputStream is)

• Example: DataIODemo.java

17Prepared By - Rifat Shahriyar

Console

• It is used to read and write to the console

• It supplies no constructor. A Console object is
obtained by calling System.console()

• Important Methods

– printf

– readLine

– readPassword

• Example: ConsoleDemo.java

18Prepared By - Rifat Shahriyar

RandomAccessFile

• This class support both reading and writing to a
random access file

• A random access file behaves like a large array of
bytes stored in the file system

• The file pointer can be read by the getFilePointer
method and set by the seek method

• Example: RandomAccessFileDemo.java

19Prepared By - Rifat Shahriyar

