Java

I/0

File

Long-term storage of large amounts of data
Persistent data exists after termination of program

Files stored on secondary storage devices
— Magnetic disks

— Optical disks

— Magnetic tapes

Sequential and random access files

File Class

Provides useful information about a file or directory
Does not open files or process files

To obtain or manipulate path, time, date,
permissions etc

Constructor
— File(String directoryPath)
— File(String directoryPath, String fileName)
— File(File dirObj, String fileName)
Example: FileDemo.java

Directory Class

Directories are also files

Contains list of files and directories
For Directory isDirectory() returns true
String|[] list()

— returns an array of strings that gives the files and
directories contained

File[] listFiles()

— Returns array of File objects
Example: DirectoryDemo.java

Stream Classes

* Java views a File as a stream of bytes.
— File ends with end-of-file marker or a specific byte number
— File as a stream of bytes associated with an object.
— Java also associates streams with devices
* System.in, System.out, and System.err
— Streams can be redirected

e Stream is an abstraction that either produces or
consumes information

Stream Classes

Java’s stream-based 1/O is built upon four abstract
classes.

— InputStream, OutputStream (for byte streams)
— Reader, Writer (for character streams)

They form separate hierarchies

Use the character stream classes when working
with characters or strings

Use the byte stream classes when working with
bytes or other binary objects

Byte Stream Classes

Topped by InputStream and OutputStream classes
InputStream is an abstract class that defines Java’s
model of streaming byte input.

int available() void close() int read()

int read(byte buff[]) int read(byte buff[], int off, int num)

OutputStream is an abstract class that defines Java’s
model of streaming byte output.

void flush() void close() void write(int b)
void write(byte buff[]) void write(byte buff[], int off, int num)

FilelnputStream

* FilelnputStream class creates an InputStream that
you can use to read bytes from a file
* Constructors

— FileInputStream(String filePath)
— FileInputStream(File fileObj)
 Example: FileInputStreamDemo.java

FileOutputStream

* FileOutputStream class creates an OutputStream
that you can use to write bytes to a file

* Constructors

— FileOutputStream(String filePath)

— FileOutputStream(File fileObj)

— FileOutputStream(String path, boolean append)

— FileOutputStream(File obj, boolean append)
 Example: FileOutputStreamDemo.java, FileCopyDemo.java

Character Stream Classes

Topped by Reader and Writer classes

Reader is an abstract class that defines Java’s model
of streaming character input

void close() int read() int read(char buff[])
int read(char buff[], int off, int num)

Writer is an abstract class that defines Java’s model
of streaming character output
void flush() void close() void write(int ch)

void write(char buff[]) void write(char buff[], int off, int num)
void write(String s) void write(String s, int off, int num)

FileReader

* FileReader class creates a Reader that you can use to
read the contents of a file

* Constructors
— FileReader(String filePath)
— FileReader(File fileObj)
 Example: FileReaderDemo.java

FileWriter

* FileWriter class creates a Writer that you can use to
write to a file

* Constructors
— FileWriter(String filePath)
— FileWriter(File fileObj)
— FileWriter(String path, boolean append)
— FileWriter(File obj, boolean append)
 Example: FileWriterDemo.java

BufferedReader

BufferedReader is a Reader that buffers input

It improves performance by reducing the number of
times data us actually physically read from the input
stream

Constructors
— BufferedReader(Reader reader)

— BufferedReader(Reader reader, int buffSize)
Example: BufferedReaderDemo.java

BufferedWriter

BufferedWriter is a Writer that buffers output

It improves performance by reducing the number of
times data actually physically written to the output
stream

Constructors
— BufferedWriter(Writer writer)

— BufferedWriter(Writer writer, int buffSize)
Example: BufferedWriterDemo.java

Serialization

e Serialization is the process of writing the state of an
object to a byte stream

— This is useful when you want to save the state of your
program to a persistent storage such as file

— Later these objects can be restored by using the process of
deserialization
* Serialization can be achieved by implementing
Serializable interface

Object(Input/Output)Stream

ObjectinputStream class extends the InputStream
class

It is responsible for reading objects from a stream

ObjectOutputStream class extends the
OutputStream class

It is responsible for writing objects to a stream
Example: ObjectSerializationDemo.java

Data(Input/Output)Stream

DatalnputStream & DataOutputStream enable to
write or read primitive data to or from a stream

They implement the DataOutput & Datalnput
interfaces respectively

Constructors

— DataOutputStream(OutputStream os)
— DatalnputStream(InputStream is)
Example: DatalODemo.java

Console

It is used to read and write to the console

It supplies no constructor. A Console object is
obtained by calling System.console()

Important Methods

— printf

— readLine

— readPassword

Example: ConsoleDemo.java

RandomAccessFile

This class support both reading and writing to a
random access file

A random access file behaves like a large array of
bytes stored in the file system

The file pointer can be read by the getFilePointer
method and set by the seek method

Example: RandomAccessFileDemo.java

