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Abstract

This work presents ‘BanglaNLG,’ a compre-
hensive benchmark for evaluating natural lan-
guage generation (NLG) models in Bangla, a
widely spoken yet low-resource language in
the web domain. We aggregate three chal-
lenging conditional text generation tasks un-
der the BanglaNLG benchmark. Then, using
a clean corpus of 27.5 GB of Bangla data,
we pretrain BanglaT5, a sequence-to-sequence
Transformer model for Bangla. BanglaT5
achieves state-of-the-art performance in all
of these tasks, outperforming mT5 (base) by
up to 5.4%. We are making the BanglaT5
language model and a leaderboard publicly
available in the hope of advancing future re-
search and evaluation on Bangla NLG. The
resources can be found at https://github.
com/csebuetnlp/BanglaNLG.

1 Introduction

The emergence of pretrained language models (De-
vlin et al., 2019; Radford et al., 2019; Liu et al.,
2019) has brought about a revolutionary change
in natural language processing. With little task-
specific fine-tuning, these models can achieve state-
of-the-art results on many natural language process-
ing tasks (Wang et al., 2018; Rajpurkar et al., 2016;
Tjong Kim Sang and De Meulder, 2003). How-
ever, most of the focus of these pretrained models
has been on natural language understanding (NLU).
Even models pretrained with generative objectives
(Raffel et al., 2020) concern themselves with NLU
tasks more than natural language generation (NLG)
tasks. Although there have been recent efforts to
uplift NLG (Gehrmann et al., 2021), they are pri-
marily geared towards high- and mid-resource lan-
guages. For example, despite being the sixth most
spoken language in the world with over 300 million
native speakers comprising 4% of the world’s total
population,1 there has not been any comprehensive

1https://w.wiki/Psq

study on Bangla NLG. This can be attributed to
the lack of a diverse set of NLG tasks under a sin-
gle benchmark and strong pretrained Bangla NLG
models.

To overcome these deficiencies, we present
‘BanglaNLG’, a benchmark for Bangla language
generation comprising three representative tasks
on machine translation, abstractive text summariza-
tion and question answering. BanglaNLG is the
first-ever NLG benchmark for a low-resource, to
the best of our knowledge.

To establish a strong baseline for this benchmark,
we pretrain BanglaT5 – a sequence-to-sequence
Transformer model (Vaswani et al., 2017) pre-
trained on a 27.5 GB clean Bangla text corpus
covering a broad range of domains. In summary:

• We develop the BanglaNLG benchmark bring-
ing together three NLG tasks.

• We pretrain BanglaT5 and evaluate it on NLG
tasks, showing strong results.

BanglaT5 outperforms its multilingual counter-
part mT5 (base), achieving new state-of-the-art re-
sults on three tasks with a 5.4% average gain over
mT5. We are releasing the BanglaT5 model and
a live leaderboard to promote future research on
Bangla NLG.

2 The Bangla Natural Language
Generation (BNLG) Benchmark

There have been prior sporadic works on Bangla
NLG, mostly catered to Machine Translation
(Hasan et al., 2020a; Mumin et al., 2019a,b) and
Text Summarization (Bhattacharjee et al., 2020;
Dhar et al., 2021). However, Bangla NLG still
lacks a unified study comprising diverse and chal-
lenging tasks. To this end, we establish the first-
ever Bangla Natural Language Generation Bench-
mark (BNLG). When selecting the evaluation tasks
for BNLG, we take the following considerations
into account:
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Task Corpus |Train| |Dev| |Test| Metric Domain
Machine Translation (bn ↔ en) BanglaNMT 2,751,315 598 1,000 SacreBLEU Misc.
Abstractive Text Summarization XLSum 8,102 1,012 1,012 ROUGE-2 BBC
Question Answering TyDiQA 127,771 2,502 2,504 F1/EM Wiki.

Table 1: Dataset statistics and basic characteristics of BNLG

Task diversity The tasks should focus on eval-
uating the generalization capabilities of an NLG
model. Therefore, they should vary in task nature –
the length of input and output, the type of generated
text, target domain, and the size of the dataset.

Task difficulty The tasks should be reasonably
challenging while not being unsolvable. In addi-
tion, models evaluated on these tasks should be
able to compete with human performance.

Reliable evaluation The selected tasks should
have reliable automated evaluation metrics to as-
sess the quality of the generated text. Therefore, we
do not consider weakly conditioned tasks such as
answer-agnostic question generation, where there
are many plausible outputs for a given input.

Quality and availability The selected datasets
for these tasks should meet the minimum qual-
ity standards and be accessible to encourage re-
searchers to design better NLG models.

Considering the above, we design BNLG as an
aggregation of three tasks, namely, Machine Trans-
lation, Abstractive Text Summarization, and Ques-
tion Answering. We briefly describe them below:

1. Machine Translation. Machine translation is
perhaps the most studied NLG task in Bangla and
the most commonly benchmarked NLG task in gen-
eral. For this task, we use the BanglaNMT parallel
corpus introduced by (Hasan et al., 2020a). It is the
largest Bangla-English machine translation dataset
curated, with 2.75 million parallel pairs as the train-
ing data. The sentence pairs originate from various
domains such as Wikipedia, news articles, religious
and law documents, etc. We evaluate the NLG mod-
els in both directions on this dataset, i.e., English to
Bangla and Bangla to English. This is particularly
challenging since it assesses an NLG model’s bilin-
gual generation capabilities. Following standard
practice, we use detokenized SacreBLEU (Post,
2018) as the evaluation metric for this task.

2. Abstractive Text Summarization. This task
aims to generate a short and fluent summary given
a long text document. We chose the Bangla por-
tion of XL-Sum (Hasan et al., 2021b) for this task.

XL-Sum is a large comprehensive dataset for ab-
stractive text summarization where the article and
summaries are annotated by professional annota-
tors of BBC. The news articles cover various topics
such as entertainment, science, technology, sports,
etc. For this task, we use ROUGE-2 (Lin, 2004) 2

as the evaluation metric.

3. Question Answering. This is a fundamental
NLP task that can be modeled as both an NLU and
NLG task. For this task, we use the BQA (Bhat-
tacharjee et al., 2022) dataset. The training data
of BQA is machine translated, while the valida-
tion and test data come from the human-annotated
question-answer pairs of TyDi-QA (Clark et al.,
2020) secondary Gold passage task. Although the
TyDi-QA task only contains answerable questions,
BQA introduced unanswerable questions to the task
to make it more challenging. Following SQuAD
2.0 (Rajpurkar et al., 2018), we use Exact Match
(EM) and F1 as the evaluation metrics.

We present detailed statistics of the BNLG
benchmark in Table 1.

3 BanglaT5

In this section, we describe the pretraining data,
objectives, and model architecture of BanglaT5.

3.1 Pretraining Data

We chose Bangla2B+ (Bhattacharjee et al., 2022)
as the pretraining data for BanglaT5. This is a
27.5 GB dataset containing 5.25 million docu-
ments collected from a meticulously selected list of
web sources. While larger sources of Bangla data
dumps like CCNet (Wenzek et al., 2020) and mC4
(Xue et al., 2021) are available, these contain a lot
of noise and offensive texts that are difficult to re-
move. For a generative model, even small amounts
of unwanted texts in pretraining could lead to poten-
tially dangerous biases in generated text (Luccioni
and Viviano, 2021). Therefore, we opted not to use
them.

2We use the rouge implementation of https:
//github.com/csebuetnlp/xl-sum/tree/
master/multilingual_rouge_scoring, since it
supports Bangla stemming

https://github.com/csebuetnlp/xl-sum/tree/master/multilingual_rouge_scoring
https://github.com/csebuetnlp/xl-sum/tree/master/multilingual_rouge_scoring
https://github.com/csebuetnlp/xl-sum/tree/master/multilingual_rouge_scoring


Model
mT5 (base)
BanglaT5

Params. MT ATS QA BNLG Score
582M 36.6/22.5 10.27 58.95/65.32 38.73
247M 38.8/25.2 13.66 68.49/74.77 44.18

Table 2: Performance comparison on different downstream tasks

3.2 Pre-processing

Following Hasan et al. (2020b), we preprocessed
the text using their normalization pipeline. We
trained a SentencePiece (Kudo and Richardson,
2018) vocabulary of 32000 subword tokens on the
normalized corpus with a character coverage of
0.99995. While creating a training sample, we
limited the maximum sequence length to 512 to-
kens for both input and output. After tokenization,
we had 4.8 million data points with an average
sequence length of 402.32 tokens.

3.3 Pretraining Objective

For generative language modeling, two stan-
dard choices are decoder-only language models
(Mikolov et al., 2010) and encoder-decoder models
(Sutskever et al., 2014). (Radford et al., 2019) train
a decoder-only left-to-right Transformer language
model pretrained on the conditional continuation
objective. However, to provide more flexibility
on generation and possible usage on understand-
ing tasks, we only consider encoder-decoder mod-
els following the original design of Transformer
(Vaswani et al., 2017). These models are trained
typically by maximizing the likelihood of the target
output given an input. To increase the capacity of
both the encoder and decoder, they are generally
trained with different denoising objectives. For in-
stance, BART (Lewis et al., 2020b), and mBART
(Liu et al., 2020) use a text infilling based denoising
objective, whereas MARGE (Lewis et al., 2020a)
is a multilingual encoder-decoder model that is
trained to reconstruct a document in one language
by retrieving documents in other languages.

Following (Raffel et al., 2020), we pretrain
BanglaT5 using a masked language modeling
"span-correction" denoising objective, which has
been empirically shown to be an optimal choice
for encoder-decoder models. In this objective, con-
secutive spans of input tokens are replaced with a
mask token, and the model is trained to reconstruct
the masked-out tokens.

3.4 Model Architecture & Hyperparameters

We pretrained the base variant of the T5 model (12
layers, 12 attention heads, 768 hidden size, 2048

feed-forward size with GEGLU activation (Shazeer,
2020)in the feed-forward layer for both the encoder
and decoder) with a batch size of 65536 tokens for
3 million steps on a v3-8 TPU instance on GCP. We
used the Adam (Kingma and Ba, 2015) optimizer
with a 3e-4 learning rate and linear warmup of 10k
steps, and ‘inverse square root’ learning rate decay.

4 Experiments & Results

We fine-tuned BanglaT5 on the selected tasks of
BNLG and compared it with its multilingual coun-
terpart mT5 (base) (Xue et al., 2021) trained on 101
languages.

All pretrained models were fine-tuned for 3-
15 epochs on each task with batch size 32-128.
We used linear warmup with a ratio of 0.1, label
smoothing of 0.1, and weight decay of 1e-6 with
the Adam optimizer. The best model was evalu-
ated based on the validation performance after each
epoch.

During inference, we used beam-search (Och
and Ney, 2004) with beam size 5 (on all tasks
except QA), removed duplicated trigrams during
beam search (Fan et al., 2018) and used a length
penalty (Wu et al., 2016) of 0.6. For QA, we use
greedy decoding, i.e., picking the most probable
token during each decoding step.

The results on different downstream tasks are
detailed in Table 2. In all the tasks, BanglaT5
outperformed mT5 by a considerable margin of
5.45%, achieving an average score of 44.18. In
monolingual tasks, as expected, BanglaT5 achieves
a big performance gain over mT5 (up to 9.54% in
the QA task), which can be attributed to the qual-
ity of the pretraining data. However, we find the
Machine Translation results particularly interest-
ing, where BanglaT5 outperforms the multilingual
mT5 in both (bn→en) and (en→bn) by 2.2% and
2.7%, respectively. This suggests that despite hav-
ing very little English data in the pretraining corpus,
BanglaT5 can generalize well to a new translation
language, given quality fine-tuning data. Further-
more, BanglaT5 is superior in performance and
substantially compute- and memory-efficient due
to its smaller size (less than half the parameters of
mT5). In practice, we observe 2-2.5x faster train-



ing and inference times with BanglaT5 compared
to mT5.

5 Related Works

Pretrained models Natural language processing
has witnessed a sea of change with the advent of
pretrained language models like ULMfit (Howard
and Ruder, 2018), ELMo (Peters et al., 2018), and
most notably BERT (Devlin et al., 2019). These
models achieved state-of-the-art results in many
NLU benchmarks. Besides these NLU models,
more and more pretraining-based models designed
for NLG tasks have been proposed. (Rothe et al.,
2020) adopt pretrained NLU model checkpoints
for generative tasks. GPT-2 (Radford et al., 2019)
and later GPT-3 (Brown et al., 2020) show that pre-
trained generative language models can perform re-
markably well in zero-shot transfer tasks. More re-
cently, Qi et al. (2020) proposed ProphetNet, which
introduces the future n-gram prediction mechanism
for language generation. Dabre et al. (2022) intro-
duced IndicBART, which is pretrained on 11 Indic
languages, including Bangla and English.

NLG Benchmarks Recently, there have been
a lot of multi-task NLG benchmarks proposed to
drive the progress of generalizable models. Mous-
sallem et al. (2020) proposed BENG as a bench-
marking platform for natural language generation
and knowledge extraction system. GLGE (Liu
et al., 2021) is a similar benchmark with a dif-
ferent set of tasks and difficulty levels. How-
ever, these benchmarks are limited to English data
only. Gehrmann et al. (2021) introduced the GEM
benchmark for various tasks such as summarization
(Hasan et al., 2021b), data-to-text generation (Nan
et al., 2021) across different languages. Cahyaw-
ijaya et al. (2021) introduced different tasks and
baseline models for 3 Indonesian languages. More
recently, (Kumar et al., 2022) introduced Indic-
NLG, a benchmark with five tasks spanning 11
Indic languages, including Bangla.

6 Conclusion & Future Works

A detailed review of recent literature reveals that
NLP research in low-resource is lagging behind due
to the lack of reliable benchmarks and datasets. To
facilitate the development, evaluation, and com-
parison of new NLG models, we introduced a
multi-task evaluation benchmark for Bangla NLG,
a widely spoken yet low-resource language. We
presented BanglaT5, a generalizable NLG model

in Bangla, setting new state-of-the-art results on all
tasks with BanglaT5. We strongly believe that our
contributions in this work will help Bangla NLP
community benchmark NLG tasks more easily un-
der a unified setup.

In future work, we plan to introduce new tasks
to BNLG, such as personalized dialogue genera-
tion (Zhang et al., 2018), conversational question-
answering (Reddy et al., 2019), cross-lingual sum-
marization (Hasan et al., 2021a). We will also add
more recent multilingual models to our comparison
to BanglaT5 such as mBART-50 (Tang et al., 2020)
and DeltaLM (Ma et al., 2021).
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