
International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

53

Ubiquitous Secretary: A Ubiquitous Computing Application Based
on Web Services Architecture

Salmin Sultana1, Rezwana Karim2, Rifat Shahriyar3, Md. Mostofa Akbar4, and

Sheikh Iqbal Ahamed 5

Bangladesh University of Engineering & Technology1, 2, 3, 4,

Marquette University5
salmin01010@yahoo.com1, nawrin01022@yahoo.com2,

rifat@cse.buet.ac.bd3, mostofa@cse.buet.ac.bd4,
 sheikh.ahamed@marquette.edu5

Abstract

Due to the extensive availability of wireless internet connectivity and low cost light weight

mobile devices, an omnipresent customizable service is not a vision anymore. With enhanced
wireless connectivity, the handheld mobile devices (PDA, smart phone, cell phone, etc.) can
act as a digital personal secretary, being employed in all aspects of life for the purposes
ranging from accessing wide range of information to performing various types of activities
with greater ease and comfort. If this type of service can be made a reality, it can be used by
different types of users in different fields such as education, tourism, shopping or business, at
any time and at any place. Here we present Ubiquitous Secretary, which is designed and
developed to accomplish the above objectives. Ubiquitous computing applications developed
so far are all independent and rich in their own domains but they suffer from the problem of
non-inter operability and non scalability. Ubiquitous Secretary is developed upon the web
services architecture that easily solves the interoperability and adaptability problem between
different ubiquitous computing applications. We developed a prototype and presented how the
implementation of the prototype satisfies the characteristics and features of Web Service
based architecture.

Keywords: Ubiquitous Secretary, Ubiquitous Computing, Web Services Architecture

1. Introduction

Ubiquitous Computing, known as the third paradigm of computing introduces the age of
calm technology [1] and the notion of one person, many computers as technologies weave
themselves into the fabric of everyday life. It is the trend towards increasingly ubiquitous,
connected computing devices in the environment, a trend being brought about by a
convergence of advanced electronic - and particularly, wireless technologies and the Internet
[2].

The handheld mobile devices such as PDA, smart phone, cell phone, etc with the help of
enhanced wireless connectivity can act as a digital personal secretary. It can be employed in
all aspects of life to perform various types of activities with greater ease and comfort by
accessing wide range of information. With these devices the users can receive services like-
exploring a city, searching for any specific information, assistance in meeting user demand,
booking hotel rooms, receiving room services, finding route to a new place and many more.
These benefits undoubtedly require creating a system that is pervasively and unobtrusively

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

54

embedded in the environment, completely connected, intuitive, effortlessly portable, and
constantly available.

Conventional middleware systems like CORBA [3], DCOM [4], MOM [5] and RMI [6]
[7] have been used to address the challenges imposed by ubiquitous computing environments.
All these systems have given rise to a wide variety of architectures. Ubiquitous computing
applications developed so far are all independent and rich in their own domains but the
services and benefits provided by one application is not accessible by the others. They also
suffer from the problem of non-inter operability and non scalability. Besides these, most of
their underlying architectures are too complex and heavy for mobile devices. Web services
provide a standard means of interoperating between different software applications, running
on a variety of platforms and/or frameworks. Web services have been used in the past for
B2B integration and inter or intra enterprise communication. Addressing all these issues, we
explore the idea of a web service based simple and unique architecture of ubiquitous
computing applications. We have extended the concept of Web Service to create another layer
of abstraction over the different existing architectures and expose their functionalities as
services. The architecture easily solves the interoperability and adaptability problem between
different ubiquitous computing architectures and provides standard protocols for
communication and service composition, description and discovery purpose. In this paper, we
present architecture for ubiquitous computing applications based on the notion of Web
service. We have also emphasized on the design development and deployment of Ubiquitous
Secretary - the first prototype of a ubiquitous computing paradigm based on this architecture.

The outline of this paper is as follows: We provide the short descriptions of the related
works in Section 2. Some scenarios and Pseudo solutions are described in Section 3 and 4.
Proposed architecture of is described in Section 5 followed by the design features in Section 6.
Development of Ubiquitous Secretary and its evaluation is presented in Section 7 and 8. Our
future research direction and concluding remarks are in Section 9.

2. Related Works

All Several Ubiquitous Computing projects have been evolved in the past few years.
Gaia [8] provides support for mobile user-centric active space applications. It manages
the resources and services of an active space. It provides services for location, context,
events and repositories with information about the active space. The current
implementation of Gaia uses CORBA. However, it is possible to port Gaia to other
communication middleware architectures including SOAP, RMI or customized
implementations. Some of the Active space applications developed for Gaia prototype
are: iCalendar (task scheduler used to schedule seminars and meetings), attendance
(Records participants for a task), mPPT (displays multiple synchronized PowerPoint
presentations), TickerTape (scrolls information around the room displays) etc.

Project Aura [9] gives a solution to user mobility problem based on the concept of
personal Aura. The intuition behind a personal Aura is that it acts as a proxy for the
mobile user it represents. When a user enters a new environment, his or her Aura
marshals the appropriate resources to support the user's task. Task Manager of Aura,
called Prism, embodies the concept of personal Aura. The Context Observer provides
information on the physical context and reports relevant events in the physical context
back to Prism and the Environment Manager. Environment Manager embodies the
gateway to the environment and Suppliers provide the abstract services that tasks are

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

55

composed of (text editing, video playing, etc). Furthermore, an Aura captures
constraints that the physical context around the user imposes on tasks.

The One.World [10] architecture employs a classic user kernel split: Foundation and
system services run in the kernel and Libraries, system utilities, and applications run in
user space. The four foundation services directly address the three requirements of
change, ad hoc composition, and pervasive sharing. They also provide the basis for the
system service of our architecture, which in turn serve as common building blocks for
pervasive applications. For example, the query engine provides the ability to search
tuples by instantiating filters, structured I/O lets applications access stored tuples in
environments; it supports the writing, reading, querying, and deleting of tuples.
Migration provides the ability to move or copy an environment and its contents,
including stored tuples, application components, and nested environments, either
locally or to another device.

In the Oxygen project [11], 'intelligent space' occupied by cameras, microphones,
displays, sound output systems, radar systems, wireless networks and controls for
physical entities, were introduced. People can interact by using speech, hand gestures,
drawing, and body movement.

In Conference Assistant [12], a prototype for assisting conference attendees in
choosing presentations to attend, taking notes, and retrieving those notes was presented.
They also discussed the important relationship between context-awareness and wearable
computing.

All these projects suffer from some drawbacks. Gaia is too heavy for mobile devices
as it is based on CORBA. The task manager of Aura is built upon RPC and CORBA and
as it is an ongoing project some of the details are still very vague. One.World is
criticized as it is built upon JVM and MS CLR. Also it uses tuples to define data
models where XML could have been an excellent alternative.

3. Ubiquitous Scenarios

To better understand the need of Ubiquitous Secretary, it is helpful to describe some
scenarios using available devices and services.

Scenario 1

Diana flies from Indonesia to Shanghai to attend the World Engineers Convention. When
she arrives at Pudong International Airport, she finds with utter disappointment that the
volunteers have forgotten to receive her. Nothing to worry about! The Ubiquitous Secretary in
Diana’s PDA gives her present location as well as the location and route to one the three star
hotels Jian Tiang just after she queries. In the hotel lobby, Ubiquitous Secretary automatically
joins the hotel reception network and verifies Diana’s identification from her PDA through
the Hotel Reception Service. Ubiquitous Secretary then provides a list of suitable rooms
according to Diana’s preference. After Diana chooses her favorite room, the reception service
transfers an electronic certificate into her PDA which authorizes the PDA to join the room
network, open the door lock and control devices in the room etc. When Diana is nearing her
room, her PDA joins the room network. After a long sleep, Diana gets up and decides to go
out for a visit of Shanghai. Ubiquitous Secretary helps her to browse the list of famous places

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

56

of Shanghai and gets reliable and necessary information about them. She selects ocean
Aquarium and Super Brand Mall for her visit.

Scenario 2

David is at home working on the organization of a conference in a remote place. He is
gathering information on possible venues and getting budgets for catering. The web pages of
some of the hotels include short videos featuring virtual visits to the premises and David
already downloaded some of these. David is also taking notes on the spreadsheet concerning
his appraisal of each venue along with the alternative catering budgets. David leaves home
and heads to his office. Since David intends to continue working, his Ubiquitous Secretary,
being capable of invoking all the services provided by Aura [9] sets up that task at David’s
office so that he can resume his work as soon as he is recognized entering the office: a web
browser over the recently visited pages, the downloaded videos paused at the same places,
and a spreadsheet containing all the entered figures. Since there is a big screen on the wall of
David’s office, that is preferred for video and web browsing, releasing Monitor for the
spreadsheet.

Scenario 3

Professor John is supposed to give a talk on Ubiquitous computing. When he enters the
classroom his Ubiquitous Secretary joins the room network and automatically uploads the
slides to be presented in the PC of that room. The A/V devices in the room are automatically
discovered and connected to Ubiquitous Secretary. During the talk, the audio and video feeds
from the room are captured and saved. The audio and video can then be made available to the
presenter and the students. Ubiquitous Secretary is a complete service provider for all of the
above scenarios. Any service developer can develop customizable applications according to
the user's need and make them accessible to the Ubiquitous Secretary.

4. Pseudo Solution

All the existing projects address the challenges of ubiquitous computing more or less but
they are based on different architectural models. So, a service that is provided by Gaia cannot
be accessed by AURA or One.World and vice versa. As all of these projects are huge and
established, it is less likely that they will be re-factored to become interoperable. But before
proposing the new architecture, let us examine whether it is possible to make them
interoperable by simple modification. One way to solve the problem is to introduce a
centralized middleware controlled by a third party [13]. All the existing architectures will
have to agree on using and co-operatively maintaining a certain middleware platform.

Figure 1. Existing Solutions

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

57

This may be implemented by deploying a specific message broker, a specific workflow
system and a specific name and directory server. Ubiquitous computing applications intended
for secure transactions between two parties may not want to use it due to lack of trust and the
confidentiality of the transactions play against the idea of having a centralized middleware
hosted by a third party. Another solution to the interoperability problem can be to address the
problem in a point to point communication, by separately tackling the integration problem
with each of the partners [13]. This means that two parties willing to communicate can agree
on using certain middleware protocols and infrastructures. For example, they can both deploy
a message broker and use it to send message to each other. But as a ubiquitous computing
application of certain architecture will have to interact with many different applications of
different architectures and each of them may require the use of different middleware platform,
this leads to a scenario when a particular ubiquitous computing architecture will have to
support many heterogeneous middleware. So the problem with the point to point
communication is that it requires employing different brokers for different architectures
which is not scalable and feasible.

5. Proposed Architecture

The architecture proposed by us tends to solve the interoperability problem by creating
another level of abstraction over the current architectures. The architecture is based on Web
Service. Web services work on the assumption that the functionality made available by the
system will be exposed as a service. The proposed architecture is presented in the following
Figure.

New ubiquitous computing applications can be built on this architecture. Also, it can be
implemented over any existing ubiquitous computing architecture. It is mainly composed of
two major components based on two aspects. The first aspect is related to the fact that web
services are a way to expose internal operations so that they can be invoked through the web.
Such an implementation requires the system to be able to receive requests through the

Figure 2. Proposed Web Service based Architecture

web and to pass them to the underlying system. In doing this, the problems are analogous to
those encountered in conventional middleware. We will refer to such an infrastructure as
internal middleware. Correspondingly, we will use the term internal architecture to refer to

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

58

the organization and structure of the internal middleware. The other facet of the architecture
is represented by the middleware infrastructure whose purpose is to integrate different web
services. We will refer to such an infrastructure as external middleware. Correspondingly, we
will use the term external architecture to refer to the organization and structure of the external
middleware.

Figure 3. Conventional Middleware as an integration platform

Internal Architecture

The easiest way to understand the internal architecture is to view it as yet another tier on
top of the other tiers of the enterprise architecture. Conventional middleware is used to build
multi-tier architectures. In these architectures, individual programs or applications are hidden
behind service abstractions that are combined into higher order programs or applications by
using the functionality provided by the underlying middleware. The resulting higher order
programs can in turn be hidden behind new service abstractions and can be used as building
blocks for new services. Since the composition of service abstractions can be repeated
spontaneously, the result is a multitier system in which services are implemented atop other
services and basic programs. When multiple middleware instances are stacked on top of each
other, the middleware used at each level does not need to be the same. The important point is
to have compatible service abstractions or to make them compatible using wrappers. The
middleware simply acts as the glue necessary to make all the components in a given level
interact with each other to form services that can be used by clients or higher levels in the
hierarchy. Although it is not strictly necessary, usually the basic components of each
middleware instance reside on a Local Area Network (LAN) and the resulting application
also runs on the same LAN. Web services or, better, the technologies supporting web
services, play the same role as conventional middleware, but on a different scale. The basis
for composition is service abstractions very similar in nature to those used in conventional
middleware, so that implementing a web service essentially requires an extra tier on top of the
others to enable access using standard web services protocols. The following Figure shows a
typical example of such an internal architecture.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

59

Figure 4. Internal Architecture

External Architecture

The external architecture has three main components:

1. Centralized brokers: These are analogous to the centralized components in conventional
middleware that route messages and provide properties to the interactions (such as logging,
transactional guarantees, name and directory services, and reliability). However, as we will
see, in practice the name and directory server is often the only centralized component present
in Web service based architecture.

2. Protocol infrastructure: This refers to the set of components that coordinate the
interactions among Web services and, in particular, implement the P2P protocols whose aim
is to provide middleware properties in those B2B settings where a centralized middleware
platform cannot be put in place due to trust and privacy issues.

3. Service composition infrastructure: This refers to the set of tools that support the
definition and execution of composite services.

What we have discussed until now is related to wrapping internal functionality as a Web
service, and not to integrating these 'wrappers'. This aspect, which was addressed by message
brokers and workflow management systems in conventional middleware, should be the job of
the external middleware. However, it is not clear where this middleware should reside. Let us
consider as an example the implementation of name and directory services. In LAN-based
systems, the middleware and the applications developed using the middleware run next to
each other. Thus, it is easy for the middleware to provide the necessary brokerage for name
and directory services to all parties involved. In Web services, the parties can reside in
different locations, and there is therefore no obvious place where to locate the middleware.

There are two solutions to this problem. One is to implement the middleware as a P2P
system where all participants cooperate to provide name and directory services. Conceptually,
this is a very appealing approach; but it is not obvious how to provide the degree of reliability
and trustworthiness required in industrial strength systems. The other solution is to introduce

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

60

intermediaries or brokers acting as the necessary middleware. Assuming we find a site
somewhere in the network that we can trust and that is reliable enough, the site could act as a
name and directory server for Web services. Hence, we will use the second approach where
the external architecture works as the coordinator among different Web services. Service
publishing, service discovery and communication are the main tasks of this part. Service
providers create Web services and define an interface for invoking them. They also generate
service descriptions for those services. The service provider then makes its services known to
the world by publishing the corresponding service descriptions in a service registry. When a
service requester tries to find a service, it queries the service registry. The service registry
answers with a service description that indicates where to locate the service and how to
invoke it.

Figure 5. External Architecture

The sequence of action in our proposed architecture is enumerated below in terms of
protocols and standards:

1. The service provider creates the Web service typically as SOAP-based service [14]
interfaces for exposed applications. The provider then deploys them in a service container or
using a SOAP runtime environment, and then makes them available for invocation over a
network. The service provider also describes the Web service as a WSDL-based service
description, which defines the clients and the service container with a consistent way of
identifying the service location, operations, and its communication model.

2. The service provider then registers the WSDL-based service [15] description with a
service broker, which is typically a UDDI registry [16].

3. The UDDI registry then stores the service description as binding templates and URLs to
WSDLs located in the service provider environment.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

61

4. The service requestor then locates the required services by querying the UDDI registry.
The service requestor obtains the binding information and the URLs to identify the service
provider.

5. Using the binding information, the service requestor then invokes the service provider
and then retrieves the WSDL Service description for those registered services. Then, the
service requestor creates a client proxy application and establishes communication with the
service provider using SOAP.

6. Finally, the service requestor communicates with the service provider and exchanges
data or messages by invoking the available services in the service container.

6. Design Features

The proposed architecture has the following features to note:

1. Interoperability: The proposed architecture does not preclude any programming model
and is comprised of loosely-coupled components and their interrelationships.

2. Simplicity: It provides a simple mechanism for applications to become services that are
accessible by anyone, anywhere, and from any device.

3. Dynamic Discovery: It enables dynamic location and invocation of services through
service brokers.

4. Integration with the World Wide Web: The model is consistent with the current and
future evolution of the World Wide Web and the architectural principles and design goals of
the existing Web.

5. Security: The architecture provides a secure environment for online processes. It enables
privacy protection for the users across multiple domains and services. Authentication and
authorization mechanisms can be easily incorporated with this architecture using SSL
enabling encryption of the message. Adopting open security standards like SAML [17], XML
Encryption, XML Signature, or XACML [18] may be a solution.

6. Scalability and Extensibility: The architecture is sufficiently extensible to allow for
future evolution of technology and new Ubiquitous Computing architectures.

7. Lightweight: As the architecture assumes communication via XML the client devices
only should have the ability to send or receive XML messages; especially suitable for mobile
devices with limited memory and processing capability.

7. Development of Ubiquitous Secretary

Underlying Architecture

Ubiquitous Secretary is developed on the Web Service based architecture [19] shown
in Figure. The architecture is composed of three main components: Service Provider,
Service Broker and Service Requestor or User. Service providers create Web services
and define an interface for invoking them. They also generate service descriptions for
their services and publish them in a service broker i.e. registry server. A service may be
an application built on this web services based architecture or on any other ubiquitous
computing architecture. These individual services or applications are hidden behind
service abstractions that are combined into higher order programs or applications by

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

62

using the functionality provided by the underlying middleware. When a service
requester tries to find a service, it queries the service registry. The service registry
returns a service description indicating where to locate the service and how to invoke it.
Service requestor depends on two underlying components - Context Service and User
Profile Management.

Context Service receives information regarding context of the user from GPS, other
sensors and supplies those to service requestor. User Profile Management maintains the
user profile containing user information, preferences task schedule etc. Service
requestor uses this information during service invocation to get the desired result.

General Approach of Implementation

Whenever a person wants to use any service she needs to know the services provided
by her current location. The information about all the services provided in that
particular location are stored in a local registry server. A unique and publicly known
universal registry server contains the inquiry URL and publishes URL of all the country
wide registry servers. The Client module takes the current location information from
GPS that works in background and finds out the corresponding country code. A web
service RegURLService using this code fetches the inquiry and publish URL of the
local registry server from the "universal registry server". The necessary information
related to all the available services in the current location is fetched from the local
registry server and shown to the user. When a service is invoked, its corresponding Web
Service Description Language (WSDL) [15] file is fetched and parsed. Parsed service
specific information such as serviceName, wsdlImplURI, endpointURL, inputPramaters
etc. are then stored. An InputGUI window is dynamically created based on required
input parameters, takes necessary input from users and requests the service. The service
provider receives the input, generates output and sends back the results to the service
requestor in vector form. An output window is then generated that shows the output in
suitable format.

Figure 6. Web Service based Architecture

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

63

How Ubiquitous Secretary Satisfies All the Characteristics

Web Services itself supports Interoperability. As Ubiquitous Secretary is
implemented based on web services, a service can be developed in any platform and
any language but still can be invoked from the same client module. Different services
can be developed by different developers but still can be integrated in the same registry
server. The databases needed for different service are also decoupled and database
servers can also be different; these are just dependent on the type of service and the
developers' choice. From the developers' point of view, a service can be easily
developed; they should just deploy the service in their own server to generate the
WSDL file and publish the service in appropriate registry server. From the user's point
of view, a service can be explored and invoked from anywhere and any device. Thus the
paradigm ensures simplicity, scalability, flexibility and extensibility. Only the Client
module resides and executes in user device and this module has tiny memory footprint.
Our application is truly context sensitive. The services the user can invoke are entirely
dependent on the user's current context and the service list is updated dynamically from
place to place without any user intervention thus paving the way for dynamic discovery
of services and context sensitivity. Though the services are distributed, they can be
invoked from anywhere any device and the results of their invocation are available to
the user within few seconds thus ensuring time efficiency. The information provided by
the services are valid and secure as each service has to be published in the registry
server, where the authority is responsible for validating and authenticating the service
provider. Thus Ubiquitous Secretary ensures reliability here.

8. Evaluation

We evaluate the Ubiquitous Secretary in the following way:

1. Prototype Implementation

2. Cognitive walkthrough strategy

3. Performance measurement

Prototype Implementation

We developed a prototype of the Ubiquitous secretary. We use .NET Compact
Framework 2.0 [20] and developed the application for Windows mobile. We use an
ASP.NET Web site for creating XML Web services and MySQL as the database server.
We use Microsoft provided Enterprise UDDI Services [21], a dynamic and flexible
infrastructure for XML Web services. This standards-based solution enables to run ones
own UDDI (Universal Description, Discovery, and Integration) directory for intranet or
extranet use, making it easier to discover web services and other programmatic
resources. Microsoft also offers UDDI client support through several tools including
Visual Studio .NET. We used that to provide access to UDDI registry from within the
application. To consume a Web service in a NET Compact Framework project, we need
to add a Web Reference to the project. A Web reference enables a project to consume a
Web service. When the Web Reference is added to your project, Visual Studio .NET
automatically generates a proxy class with methods that serve as proxies for each
exposed method of the Web service.

The core services provided by our Ubiquitous Secretary are:

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

64

1. LocationService: The LocationService informs the user of the current location.

2. NeighborService: NeighborService provides the user with the list of nearby
facilities such as hotels, restaurants, museums, companies, parks and markets.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

65

Figure 7. Screenshots of Prototype

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

66

 3. MapPointService: It gives a route or location of a destination. After providing
current location information and destination information, MapPointService successfully
gives the user the location of the destination and how to get there.

4. HotelReceptionService: It provides the user with the available room list with their
facilities.

5. HotelRoomService: The Hotel Room Service provides a user with the details of her
room.

Some screen shots of the prototype are shown above.

Cognitive walkthrough strategy

Cognitive Walkthrough Strategy [22] encompasses one or a group of evaluators who
inspect a user interface by going through a set of tasks and assess its understandability
and ease of learning. To evaluate our Ubiquitous Secretary, we followed this strategy.

1. Who will be the users of the system? 2 Ph.D. students (Computer Science and
Eng.), 2 graduate students (Computer Science and Eng.), 1 undergrad student (Chemical
Eng.), 2 from general mass, 1 professor, 1 lecturer and 1 service holder were chosen as
the users. We have tried to cover all type of end users.

2. What tasks will be analyzed? The services provided by our Ubiquitous Secretary
were executed by the users. We have tried to select the tasks to be analyzed in such a
way that no major task has been overlooked.

3. What is the correct action sequence for each task? First, we briefly explained the
task sequences and process to get result. A questionnaire was given to the users. [23]
The following Figures show the user's and application developer's satisfaction rating.

Figure 8. Rating by Users

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

67

Figure 9. Rating by Application Developer

Performance Measurement

We have measured the time required for service discovery and different service
invocation using US. The following Figure shows timing diagram for dynamic service
discovery, Location service invocation and time to appear input form for MapPoint
service invocation.

Figure 10. Time measurement of different Service invocation

The average time needed to discover services is approximately 1.44 sec, to invoke
Location service is 0.45 sec and to appear input form for MapPoint service is 0.35 sec.
The time needed for Neighbor Service, MapPoint service and HotelRoom service
invocation given inputs are like Location service. Thus, Ubiquitous Secretary needs
reasonable time to provide output which ensures its acceptability and user satisfaction.

9. Future Works and Conclusion

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

68

In this paper, we have shown that Ubiquitous Secretary - a ubiquitous paradigm based on
Web services based architecture can be developed successfully while ensuring almost all the
features as have been demanded by the proposer of the architecture [24] and all the
characteristics of Ubiquitous Secretary as required in different fields. In Ubiquitous Secretary,
the service publishing and discovery issues are easily handled by the existing standards like
WSDL and UDDI. In terms of interoperability, scalability, robustness and security this
paradigm developed on Web services based architecture seems to be a perfect example of
ubiquitous computing applications. Although we have claimed the system to be secure, we
have not introduced the concept of XML encryption, XML Signatures and SAML in our
architectural design. The proposed architecture relies on the assumption that agents coming
from trusted entities would not hoard system resources to pose denial of service threats. The
Semantic Web efforts, especially with respect to the recent trend toward Semantic Web
Services, aim at fully automating all the stages of the Web Services lifecycle. In the future we
will incorporate User authentication by using signature or fingerprint and Semantic Web
Services [25] to discover suitable services intelligently.

References
[1] M. Weiser and J. Seely-Brown, "The Coming Age of Calm Technology", eds. Copernicus, Heidelberg,
Germany, 1998.

[2] Ubiquitous computing, http://en.wikipedia.org/wiki/Ubiquitous computing.

[3] Introduction to CORBA, http://java.sun.com/developer/onlineTraining/corba/corba.html

[4] DCOM Technical Overview, http://msdn.microsoft.com/en-us/library/ms809340.aspx.

[5] Message Oriented Middleware, http://www.tml.tkk.fi/Opinnot/Tik-110.551/1997/mqs.htm.

[6] Remote Method Invocation Home, http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp.

[7] Distributed Java Programming with RMI and CORBA,

http://java.sun.com/developer/technicalArticles/RMI/rmi _corba/

[8] M. Roman, C. Hess, R. Cerqueria, A. Ranganat, R.H. Campbell, and K. Nahrstedt, "Gaia: A
Middleware Infrastructure to Enable Active Spaces", Mobile Computing and Communications Review,
vol. 6, no. 4, pp. 65-67, June 2002.

[9] J. P. Sousa and D. Garlan, "Aura: an Architectural Framework for User Mobility in Ubiquitous
Computing Environments", Kluwer Academic Publishers, pp. 29-43, 2002.

[10] R. Grimm, "One.world: Experiences with a Pervasive Computing Architecture", IEEE Pervasive
Computing, pp. 22-30, July-September 2004.

[11] MIT Project Oxygen, Pervasive Human-Centered Computing, "Project Overview", July 2005.

[12] Dey, A. K., Salber, D., Abowd, G. D., and Futakawa, M., "The Conference Assistant: Combining
Context-Awareness with Wearable Computing", ISWC 1999.

[13] G. Alonso, F. Casati, H. Kuno and V. Machiraju, "Web Services: Concepts, Architectures and
Applications", Springer-Verlag, 2004, pp. 123-148.

[14] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[15] Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl

[16] UDDI Version 3.0.2, http://www.uddi.org/pubs/uddi v3.htm

[17] Security Assertion Markup Language (SAML), http://en.wikipedia.org/wiki/SAML

[18] eXtensible Access Control Markup Language (XACML), http://en.wikipedia.org/wiki/XACML

[19] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Orchard, "Web
Services Architecture", W3C Working Group Note, February 11, 2004.

[20] Microsoft .NET Compact Framework 2.0 http://blogs.msdn.com/netcfteam/

[21] UDDI Services, http://uddi.microsoft.com

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

69

[22] John Rieman, Marita Franzke, and David Redmiles,"Usability Evaluation with the Cognitive
Walkthrough", CHI '95 Proceedings@ACM

[23] Usability Inspection: Cognitive Walkthrough, http://www.pages.drexel.edu/ zwz22/CognWalk.htm

[24] Dr. Md. Mostofa Akbar, Imranul Hoque, Sonia Jahid, "A Web Service Based Architecture for
Ubiquitous Computing Applications", International Conference on Computer and Information Technology
(ICCIT)-2005, pp. 710 - 715, Dhaka, Bangladesh, 2005 (www.iccit.org)

[25] Sheila A. McIlraith, Tran Cao Son, and Honglei Zeng.,"SemanticWeb Services", IEEE Intelligent
Systems, 16(2):4653, March/April 2001.

International Journal of Multimedia and Ubiquitous Engineering

Vol. 4, No. 4, October, 2009

70

