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Abstract—We introduce a novel safe route planning problem
and develop an efficient solution to ensure the travelers’ safety
on roads. Though few research attempts have been made in this
regard, all of them assume that people share their sensitive travel
experiences with a centralized entity for finding the safest routes,
which is not ideal in practice for privacy reasons. Furthermore,
existing works formulate the safe route planning query in ways
that do not meet a traveler’s need for safe travel on roads.
Our approach finds the safest routes within a user-specified
distance threshold based on the personalized travel experience
of the knowledgeable crowd without involving any centralized
computation. We develop a privacy preserving model to quantify
the travel experience of a user into personalized safety scores.
Our algorithms for finding the safest route further enhance
user privacy by minimizing the exposure of personalized safety
scores with others. We implement a working prototype of our
solution on the Android platform. Extensive experiments using
real datasets show that our approach finds the safest route in
seconds with 50% less exposure of personalized safety scores.

Index Terms—crowdsource, privacy, safe route, route planner

I. INTRODUCTION

Location-based services, especially the journey planners
like Google or Bing Maps, have become an integral part
of our life for moving on roads with convenience. Existing
services mainly consider distance and traffic while planning
the routes for the travelers. However, the shortest or the
fastest route is not always the best choice. While travelling
on roads, people face many inconveniences like theft and
pick-pocketing; women face harassment like eve-teasing and
unwanted physical touch. People would like to travel a little
bit longer on a safer route that avoids those inconveniences.
During the outbreak of an infectious disease like COVID-19,
a pedestrian may want to avoid a crowded road to keep herself
safe from infection. The chance for a virus to exist on the air
and road surface increases with the increase of the number of
pedestrians. The road safety in such pandemic period can be
measured based on the level of road crowdedness. To meet
the traveler’s need on roads, we introduce a safe route planner
that finds the safest route (SR) between a source-destination
pair within a distance constraint.

The data needed for computing the SRs may come from
official crime reports and personal travel experiences of the
crowd. The latter is more valuable than the former one due
to its recency and adequacy. However, travel experiences are
often sensitive and private data, and people, especially women,

do not feel comfortable sharing their detailed travel experi-
ences and harassment data with others [1]. These factors have
inspired us to develop a privacy enhanced safe route planning
system by not sharing the personalized travel experiences of
the crowd with a centralized entity or others.

Our approach personalizes the safety score (SS) of a user’s
travel experience (both safe and unsafe) with respect to the
user’s travel pattern. If two users face the same crime on two
roads, then these roads may have different SSs considering
the frequency and recency of the users’ visits on those roads.
Ignoring the personal travel pattern of the users would reduce
the quality of data and the accuracy of the query answer. We
develop a model to quantify a user’s travel experience for a
visited area into a personalized safety score (pSS) based on
frequency and recency of the user’s visits, location, time, and
type of inconveniences faced. Users store their pSSs of their
known areas on their own device or any other private storage
(e.g., cloud storage) and use them to find the SRs for others.
The transformation of a user’s travel experience into a pSS is
a one-way mapping. From the revealed pSS of a user, it is not
possible to pinpoint the type of incident faced by the user. It
may only allow an adversary to infer high-level information
on a user’s travel experience (e.g., a user faced a crime event
without knowing the crime type).

To further enhance user privacy, we minimize the amount of
pSS information shared to evaluate the SR query. We develop
efficient query processing algorithms that find the SRs from
the refined search space and minimize the exposure of pSS
information. Since the number of possible routes between a
source-destination pair is extremely high, a naive algorithm
cannot find the SRs in real-time. Our search space refinement
techniques allow our query processing algorithms to find the
SRs with significantly reduced processing overhead.

Every user is not familiar with all roads, and it is also
not feasible to involve a user for all queries. For a specific
SR query, we identify the users who are familiar with the
query relevant area and select them as group members. The
trustworthiness of the query answer depends on the overall
knowledge of the selected group members. To show the
credibility of the answer, we present a new measure called
confidence level [2], [3] in the context of the SR query.

Existing safe route planners involve a centralized entity to
find the SRs using crime data collected from reports [4] or
crowd [5] or both [6]–[8]. They have major limitations:
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• Ignore the privacy issues of the crowd harassment and
incident data and thus suffer from data scarcity problem.
Missing incident data can cause a system to return a route
that is not actually safe and put a traveler at risk.

• Do not personalize the crowd’s travel experiences by
considering a user’s travel pattern, which is essential to
improve the accuracy of the query answer.

• Do not consider individual distances associated with
different SSs for ranking the routes. For example, if two
routes have the same lowest SS, then the route for which
a user has to travel less distance with the lowest SS is
the safest one, though its total distance might be greater
than that of the other route.

• Do not show any measure to represent the trustworthiness
of the identified SRs.

In recent years, the increase of the computational power
and storage in smartphones has enabled researchers to envi-
sion for crowdsourced systems [2], [3], [9]. To the best of
our knowledge, we propose the first privacy-enhanced and
personalized solution for the SR queries with crowdsourced
data and computation. Our solution overcomes the limitations
of existing route planners. Our contributions are as follows:
• We present a model to quantify a user’s travel experiences

into irreversible pSSs and modify the indexing technique,
R-tree to store pSSs. Based on pSSs, we design a privacy-
enhanced crowd enabled solution for the SR queries.

• We select the users who have required knowledge in
a query relevant area, and we guarantee the credibility
of the query answer evaluated based on the data of the
selected group members in terms of the confidence level.

• We develop optimal algorithms, direct and iterative, to
efficiently evaluate the SRs. The direct algorithm reveals
group members’ pSSs only for the query relevant area.
The iterative one further reduces the amount of shared
pSSs at the cost of multiple communications per group
member. We develop a heuristic that has less pSSs
exposure than the direct algorithm and less communica-
tion frequency than the iterative algorithm. The heuristic
algorithm sacrifices the answer’s accuracy slightly.

• We run extensive experiments with real datasets and
evaluate the effectiveness and efficiency of our approach.
We implement a working prototype of our solution and
show its applicability in the real environment.

II. PROBLEM FORMULATION

The road network N = (V,E) consists of a set of vertices
V and a set of road segments E. The vertices represent the
start or the end or the intersection points of roads. An edge
eij ∈ E connects the vertex vi to the vertex vj , where
vi, vj ∈ V . A route R consists of a sequence of vertices
R = (vi1 , vi2 , . . . , vi|R|), where eik−1ik ∈ E. The total
distance dist(R) of R is the summation of distances of all
edges in R. Table I shows the notations used in this paper.

The total space is divided into grid cells. The knowledge
score (KS), the pSS and the SS are computed for each grid
cell area, which are defined as follows:
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Fig. 1: R3 is the SR between s and d with SS = −2, δ = 18

Definition 1. A knowledge score (KS): The KS of a user for
a grid cell area represents whether the user has visited the
area of a grid cell. This KS is 0 if the user has not visited the
area in the last w days, 1 otherwise.

Definition 2. A personalized safety score (pSS): Given the
safety score bound [−S, S], the pSS of a grid cell area rep-
resents a user’s travel experience in the area and is quantified
between −S ≤ pSS ≤ S.

Definition 3. A safety score (SS): Given a set of pSSs
Ψ1,Ψ2, . . . ,Ψn of n users for a grid cell area, the SS of the
grid cell area is computed as

⌊
Ψ1+Ψ2+...+Ψn

n

⌋
.

To make the SS measure independent of the number of users
who know about an area, we take the average of the pSSs
instead of adding them together. The number of users whose
pSSs are used to find the SS is considered to determine the
credibility of the safest route (Section IX-C2).

SS based route ranking. The SS of route R is the minimum
of all SSs associated with the edges of R. The intuition behind
considering the minimum SS instead of the average SS of the
route is that even a small distance of road with a bad SS may
put a traveler into risk. The route that has the largest minimum
SS among all possible routes between a source-destination pair
is considered as the SR. If two routes have the same largest
minimum SS, then we consider the smallest SS for which
associated distances of two routes differ. The route that has
the smallest associated distance for the considered SS, is the
SR. We formally define the SR query below:

Definition 4. A safest route (SR) query: Given a road net-
work N(V,E), distances and SSs of road segments, a source
location s, a destination location d and a distance constraint
δ, the safest route query returns a route SR between s and d
such that dist(SR) ≤ δ and SR is safer than R, where R is
any other route between s and d having dist(R) ≤ δ.

TABLE I: Notations and their meaning

Notation Meaning
N(V,E) A road network
s, d Source and destination vertices
δ Distance constraint
SR Safest route
pSS Personalized safety score
SS Safety score
KS KS
[−S, S] SS or pSS range
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TABLE II: A comparative analysis with existing safe route planners

Problem Settings Privacy EfficiencySafety
Level pSS Objective δ

[4] Multiple × Provide multiple routes with trade off between SS and total distance × × X
[5] Safe/Unsafe × Minimize the travel in unsafe regions × × ×
[6], [7] Multiple × Minimize the weighted combination of SS and total distance × × ×
[10] Safe/Unsafe × Minimize the travel in unsafe regions × × X
ours Multiple × Minimize the distance associated with the risky roads X X X

In Fig. 1, assume that δ = 18. The distance of R1, R2, R3

and R4 are 12, 17, 17, 21 respectively. R4 does not satisfy
δ. The smallest SSs associated with R1, R2 and R3 are -
5, -2 and -2, respectively. Though both R2 and R3 have the
largest minimum SS, R3 is the SR because R3 has the smallest
distance associated with the smallest SS -2.

Privacy model. We assume a semi-honest setting, where
participants follow the system protocol but are curious to infer
sensitive data from the shared information. In our system,
the unsafe event type (e.g., pick-pocketing or harassment) are
considered as private data. We assume that anyone can play
the role of an adversary for a user. The adversary knows the
model to compute the pSSs but does not have any background
knowledge about the time and frequency of a user’s visits to
an area. A user shares the KSs and pSSs for the purpose of
the query evaluation. Our solution refrains an adversary from
inferring the unsafe event type that a user encounters from the
shared information of the user. Since a pSS can reveal high
level information like a user faced an unsafe event but not
the type, our solution also aims to minimize the number of
revealed pSSs for enhancing a user’s privacy.

III. RELATED WORKS

A. Safe Route Planners

Though researchers attempted to solve the safe route plan-
ning problem, the works have major limitations. Table II shows
the problem settings and other features of existing works.

Problem setting. None of the existing work considers min-
imizing the individual distance associated with risky roads.
Thus, the problem settings of existing works are not suitable
for safe travel on roads. Furthermore, instead of considering
the total distance constraint, selecting appropriate weights
in [6], [7] is not easy since it is not intuitive to determine which
weights would meet a user’s preferred trade-off between safety
and distance for a specific source-destination pair. Again, there
is no guarantee that the returned routes in [4] satisfy a user’s
required preference for safety and distance.

Privacy. The crime data for safe route planners may come
from crime reports [4], [8], [11] or directly from crowds [5]–
[8]. Crime reports are not regularly updated, and incomplete
because many crimes go unreported. Though crowd knows
more and recent information compared to the crime reports,
they would not share their incident and harassment data with
a centralized service provider, if privacy of their data is not
ensured. Thus, one major limitation of existing works is that
they suffer from data scarcity issues for privacy reasons and
do not have enough data to provide accurate answers.

Efficiency. None of the existing safe route planning systems
except [4], [10] developed efficient algorithms for large road
networks. However, as already mentioned, the problem settings
of [4], [10] cannot meet a traveler’s requirement on roads.

Other route planners. Variants of orienteering and schedul-
ing problems [12], [13] have been studied for route planning.
An orienteering problem finds a route between a source-
destination pair that maximizes the total score within a budget
constraint, where a score is obtained when the route goes
through a vertex. The scheduling problems focus on incor-
porating temporal constraints in route planning (e.g., visiting
locations to perform services in a timely manner). The problem
settings of orienteering and scheduling problems are different
from an SR query. Furthermore, their solutions do not consider
search space refinement [14] and are not scalable for large road
networks. For example, the exact solution of an orienteering
problem can be found for a graph of up to 500 vertices [13],
whereas the real road networks that we use in our experiments
have on average 24 thousand vertices.

An SR query can be transformed to a multilevel optimiza-
tion problem for solving it with a commercial optimization
tool like IBM CPLEX: (L1) identify all routes that have the
largest minimum SS within δ, (L2) consider the smallest SS for
which the associated length of the identified routes differs and
find the routes that have the smallest length associated with
the considered SS, (L3) repeat L2 until the remaining route(s)
have same length associated with every SS. However, IBM
CPLEX is not effective in terms of time and memory when a
problem requires to find multiple answers like multiple routes
with the same largest minimum SS in the SR query [15].

B. Crowdsourcing

Crowdsourcing has been widely used for route recommen-
dation [16], [17] and POI search [2], [3], package delivery [18]
and indoor mapping [19]. In [2], the authors considered
protecting privacy of a user’s POI knowledge by minimizing
the shared POI information with others. Compared to the static
POI data, crime data are more complex and challenging to hide
from others. We develop a quantification model to hide the
type of incident data using pSS and search space refinement
techniques to minimize the shared pSS information.

IV. SYSTEM OVERVIEW

We develop a privacy-enhanced, personalized, and trustwor-
thy solution for safe route planning with crowdsourced data
and computation. Fig. 2 shows the architecture of our system.
Users in our system store their pSSs of their visited areas on
their own devices. In the case of storage constraints, users can
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Fig. 2: System architecture

also consider alternative private storage (cloud storage). The
users share their KSs with the centralized server (CS). A KS
only provides the information that a user has visited the area.
A user can also hide the information of her visit on a sensitive
area by not setting corresponding KS to 1 as the user has the
control to decide on what the user shares with the CS.

It is not realistic to use the computation power of all users
for all queries and asking them whether they know any query
relevant area. The availability of KSs allows CS to address this
issue. When the CS receives a query from a query requestor
(QR), it selects a group based on the query parameters and
the stored KSs of the users. Then the CS returns temporary
IDs of the group members to the QR and sends the identity
of the QR to the group members. A user’s temporary ID
is changed periodically and thus a QR cannot identify the
user who participates in multiple queries. The QR evaluates
the query in cooperation with the group members without
involving the CS. The QR retrieves pSSs of the query-relevant
area from the group members, computes the SS of each road
using the pSSs of the group members, and finds the SR.

V. QUANTIFICATION OF SAFETY

A. Limitations of Existing Models.

Existing researches on safe routes have modeled safety in
a variety of ways. The authors of [6], [7] quantify the safety
of a road network edge by simply considering the number
of crimes in the particular distance buffer area of that edge.
They do not consider the recency and the severity of crimes,
the ratio between the unsafe visits and the safe visits by an
individual user, and the fact that the impact of a crime decays
with distance. Thus, the quantified SSs of roads in [6], [7]
fail to model the real-scenarios. The work in [4] improves the
way to find the SS of a road network edge by considering
the crime events of the last few days and weighting the crime
events based on their distances from the road. None of the
above works [4], [6], [7] allow the SS to vary in different parts
of a road network edge, which is possible for long roads.

In [8], the authors provide a more elaborate model of safety.
However, the model suffers from the following limitations:
(i) stores historical data and cannot address the constraint

of the limited storage of the personal devices, (ii) does
not differentiate the weights of crime events based on the
frequency of the user’s visits, (iii) only considers that the effect
of a crime spreads to its nearby places only if no crime occurs
there, (iv) does not provide a smooth decay of the effect of
older events, rather takes the moving average of the events of
the last few days, and discards the impact of previous events,
(v) does not consider the severity of a crime event, and (vi)
does not allow the SS to vary in different parts of an edge.

B. Our Model.

We develop a model that overcomes the limitations of
existing models. In our model, the travel experiences of users
are converted into pSSs and then aggregated to infer the SSs
of different areas. When a user visits an area, an event occurs.
If the user faces a crime, then that event is unsafe; otherwise,
it is safe. Our model has the following properties:

1) The safety of an area depends on the frequency of the
users’ visits. If a user visits an area twice and faces unsafe
events both times, then intuitively, that area is riskier than
another area where a user visits 10 times and faces unsafe
events two times among those visits. If a user visits an
area 5 times safely, then that area is safer than another
area that is visited once safely.

2) The safety of an area also depends on the safety of its
nearby places. Therefore, if a user visits an area, the
impact of the event is distributed to nearby areas.

3) The safety of an area depends on the recency of the safe
and unsafe events. If a user faces an unsafe event in an
area, then the crime’s effect decays with time. Similarly,
if a user safely visits an area, after some time, that visit’s
impact decays, and that is not perceived as safe as before.

4) The safety of an area depends on the type and severity
of an unsafe event.

5) The pSSs are not allowed to grow indefinitely. They are
bounded within a maximum and a minimum value so
that while aggregating, a single user’s experience does
not dominate the SS of an area.

6) A road network edge may go through multiple grid cells
and thus, can have different SSs.
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An important advantage of our model is that it is storage
efficient as it does not store historical visit data of a user.

Computation. Let the impact of a safe event in the occurring
area be ξ+ and the impact of an unsafe one be ξ−, where
ξ+, ξ− ∈ N. ξ+ is the same for all safe events. ξ− varies with
the type and the intensity of the crime or inconvenience faced.

The impact ξ(= ξ+/ξ−) of an event reduces exponentially
in nearby areas and becomes ξ′ as per the following equation:
ξ′ = ξ ∗ e− dist2

2∗h2 , where the constant h controls the spread of
the event. dist represents the distance of the event location
from the grid cell. This equation is inspired by the Gaussian
kernel density estimation [4].

The pSS, Ψ of an area is bounded within [−S, S] and Ψ ∈ N
and 0 < ξ+ < S and −S < ξ− < 0. If an event occurs in
a place for the first time then Ψ = ξ. If another event occurs
there, then Ψ = Ψ + ξ. If an event ξ occurs nearby, whose
effect is ξ′ here, then Ψ = Ψ + ξ′. If Ψ > S then Ψ = S and
if Ψ < −S then Ψ = −S. Initially, Ψ is set to unknown.

A pSS decays in every ∆d days. If the decay rate is rd and
Ψ 6= 0, then after every ∆d days, Ψ becomes Ψ = Ψ ∗ rd,
where 0 < rd < 1 and rd ∈ R. Therefore, the decay of
older events’ impacts is smooth. For example, if rd = 0.8 and
∆d = 2, then Ψ = 3 becomes 2.4 after two days, and becomes
1.92 after two more days.

The values of parameters ξ+, ξ−, S+, S−, ∆d and rd are
the same for all users and decided centrally. For each grid cell,
our model stores only two values: the pSS and when that pSS
was last updated. Therefore, this model is storage-efficient and
suitable for smart devices. The SS of an area is computed from
the shared pSSs of the users (Definition 3).

VI. INDEXING USER KNOWLEDGE

A user stores the pSS for every visited grid cell in the local
storage and accesses it for evaluating the SR query. The CS
stores the KSs of users for every grid cell and uses them
for computing query-relevant groups. For efficient retrieval
of pSSs and KSs, we use indexing techniques: local and
centralized, respectively.

A. Local Indexing.

Storing pSSs for the whole grid in a matrix would be
storage-inefficient because a user normally knows about some
parts of the grid area. We adopt a popular indexing technique
R-tree [20] for storing pSSs of the visited grid cells. The
underlying idea of an R-tree is to group nearby spatial objects
into minimum bounding rectangles (MBRs) in a hierarchical
manner until an MBR covers the total space.

For every visited grid cell, a user stores its pSS and the
time of its last update. The last update time is required for
decaying the pSS. To reduce the storage overhead, we combine
nearby adjacent grid cells with an MBR, where the grid cells
have the same SS and the difference between the last update
time of two cells does not exceed a small threshold. We call
this MBR as a supercell and each leaf node of an R-tree
represents a supercell. Each leaf node stores the information
of the coordinates of MBR, the pSS, and the average of the
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last update time of the considered grid cells of a supercell.
The supercells are recursively combined into MBRs. The
intermediary nodes of the R-tree stores the coordinates of the
MBR. The MBR of the root node of the R-tree represents the
total grid area. Fig. 3 shows an example of a grid and the
corresponding R-tree. For the sake of clarity, we do not show
the last update times in the figure.

Supercell generation. A traditional R-tree only considers
the location of the spatial objects for grouping, whereas we
consider the location, the pSS and the last update time of the
grid cells for grouping them into supercells. To compute the
non-overlapping supercells, we scan the grid cells twice: row-
wise and column-wise. For row-wise (or column-wise) scan,
we maximize the number of grid cells included in a supercell
row-wise (column-wise) and then take the supercells of the
scan (row-wise or column-wise) that generates the minimum
number of supercells. After computing the supercells for the
leaf nodes, we insert them into a traditional R-tree.

Supercell update. To update the pSSs of grid cells for a
visited route R, the following steps are performed:
• Compute route cells and affected cells. Compute the grid

cells that overlap with R as route cells. The affected cells
include the route cells and their nearby cells (Fig. 4).

• Compute temporary MBR. Find the temporary MBR that
includes the affected cells and one extra grid cell besides
each affected cell in the boundary (Fig. 4). The reason
behind considering an extra grid cell is to identify the
adjacent existing supercells later.
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• Find overlapping supercells. Find existing supercells that
intersect with the temporary MBR. There are four over-
lapping supercells in Fig. 4.

• Compute working MBR. Find the working MBR that
includes thpse overlapping supercells and the affected
cells (Fig. 4).

• Generate new supercells. By considering the location, the
pSS and the last update time of the grid cells included in
the working MBR, generate the new supercells.

• Update R-tree. Remove those overlapping supercells
from R-tree and add the new supercells. Update the
intermediary nodes based on the change in the leaf nodes.
Fig. 3b shows the updated R-tree for the change of the
pSS from 3 to -2 in a grid cell (shown with a red circle).

B. Centralized Indexing.

The KSs are accessed when the query-relevant groups are
computed and updated when a user visits a new area. Since
the probability is high that at least a user knows a grid cell
area, we store each grid cell’s data in a hash-map with the
grid cell’s coordinates as key. For each grid cell, we store the
user ids whose KS is 1 for the corresponding grid cell area.

VII. QUERY EVALUATION

In our system, a query requestor (QR) retrieves the required
pSSs from relevant users and evaluates the SR query. We
develop direct and iterative algorithms to find the SR for a
source-destination pair s and d within a distance constraint δ.

The number of possible routes between a source-destination
pair can be huge. Retrieving the pSSs for all grid cells that
intersect the edges of all possible routes and then identifying
the SR would be prohibitively expensive. Our algorithms refine
the search space and avoid exploring all routes for finding
the SR. We present two optimal algorithms: Direct Optimal
Algorithm (Dir OA) and Iterative Optimal Algorithm (It OA).
Dir OA aims at reducing the processing time, whereas It OA
increases the privacy in terms of the number of retrieved
pSSs. Though a pSS does not reveal a user’s travel experience
(Section VIII) with certainty, the user’s privacy is further
enhanced by minimizing the number of shared pSSs with the
QR. We develop a Safety Score based Heuristic Algorithm
(SS HA). SS HA has less exposure of pSSs than that of
Dir OA and less communication frequency than that of It OA.
SS HA sacrifices the accuracy of the answer slightly.

Query-relevant area Aq . Our algorithms exploit the ellipti-
cal and Euclidean distance properties to find the query-relevant
area Aq . We refine the search area using an ellipse where
the foci are at s and d of a query and the length of the
major axis equals to δ. According to the elliptical property, the
summation of the Euclidean distances of a location outside the
ellipse from two foci is greater than the length of the major
axis. On the other hand, the road network distance between
two locations is greater than or equal to their Euclidean
distance. Thus, the road network distance between two foci,
i.e., s and d through a location outside the ellipse, is greater
than δ. The refined search area Aq includes the grid cells

that intersect with the ellipse. Aq enables us to select a
query-relevant group and mitigate unnecessary processing and
communication overheads and data exposure.

Query-relevant group Gq . A query-relevant group Gq con-
sists of the users whose KS is 1 for at least one grid cell in
Aq . After receiving a query, the centralized server sends Gq

and the list Mq of knowledgeable group members for every
grid cell in Aq to the QR.

Algorithm 1: Dir OA(s, d, δ, N )

1 N ′, Aq ← compute query area(s, d, δ,N);
2 Gq,Mq ← retrieve query group(Aq);
3 SSq ← compute SS(Gq,Mq, Aq);
4 N ′′ ← refine query area(s, d, δ,N ′, SSq);
5 SR← compute safest route(s, d, δ,N ′′, SSq);
6 return SR;

A. Direct Optimal Algorithm (Dir OA)

One may argue that we can simply apply an efficient
shortest route algorithm (e.g., Dijkstra) for finding the SR by
considering the SS instead of the distance as the optimizing
criteria. However, it is not possible because the SR identified
in this way in most of the cases may exceed δ.

Algorithm 1 shows the pseudocode for Dir OA. The algo-
rithm starts by computing the query-relevant area Aq and the
query relevant road network N ′ that is included in Aq . The
edges in N that go through grid cells in Aq but those cells
have not been visited by any user are not included in N ′. Then
the algorithm retrieves the query relevant group Gq and the list
Mq of grid cell wise knowledgeable group members from the
centralized server. In the next step, the algorithm retrieves the
pSSs from the group members and aggregates them to compute
the SSs of the grid cell in Aq using Function compute SS.

After having the SSs for the grid cells in Aq , the algorithm
further refines N ′ to N ′′ by pruning the edges that are
guaranteed to be not the part of the SR (Line 4). The idea of
this pruning comes from [4], where edges with the lowest SSs
are incrementally removed until s and d become disconnected.
To reduce the processing time, we exploit binary search for
finding N ′′. Specifically, we compute the mid value mid of
the lowest and the highest SSs, i.e., −S and S, and remove
all edges that have SS lower than or equal to mid. Note that
an edge can have more than one associated SSs as it can go
through multiple grid cells. For binary search, we consider the
minimum of these SSs as the SS of the edge. After removing
the edges, we find the shortest route between s and d and check
if the length of the shortest route satisfies δ. If no such route
exists, then the removed edges are again returned to N ′′, and
the process is repeated by setting the highest SS to mid. On
the other hand, if such a route exists, the process is repeated
by setting the lowest SS to mid + 1. The repetition of the
process ends when the lowest SS exceeds the highest one.

Finally, Dir OA searches for the SR within δ in N ′′ using
Function compute safest route. Dir OA starts the search from
s and continuously expands the search through the edges in
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the road network graph N ′′ until the SR is identified. The
algorithm keeps track of all routes instead of the safest one
from s to other vertices in N ′′ as it may happen that expanding
the SR from s exceeds δ before reaching d.

The compute safest route function uses a priority queue
Qp to perform the search. Each entry of Qp includes a route
starting from s, the road network distance of the route, the
distance associated with each SS in the route. The entries in
Qp are ordered based on the safety rank, i.e., the top entry
includes the SR among all entries in Qp. Initially, routes are
formed by considering each outgoing edge of s. Then the
routes are enqueued to Qp. Next, a route is dequeued from
Qp and expanded by adding the outgoing edges of the last
vertex of the dequeued route. The formed routes are again
enqueued to Qp. The search continues until the last vertex of
the dequeued route is d. While expanding the search we prune
a route if it meets any of the following two conditions:
• If the summation of the road network distance of the route

and the Euclidean distance between the last vertex of the
route and d exceeds δ.

• If the road network distance of the route exceeds the
current shortest route distance of the last vertex from s.

Both pruning criteria guarantee that the pruned route is not
required to expand for finding the SR. The current shortest
route in the second pruning condition for a vertex v from s
is determined based on the distances of the dequeued routes
whose last vertex is v. Since the dequeued routes to v are safer
than a route that has not been enqueued yet, the route can be
safely pruned if its length is greater than the current shortest
route’s distance.

Algorithm 2: It OA(s, d, δ, N )

1 N ′, Aq ← compute query area(s, d, δ,N);
2 Gq,Mq ← retrieve query group(Aq);
3 SSq ← ∅, Qp ← ∅, v ← s;
4 while v! = d do
5 Aq

′ ← find required cells(v,N,Aq, SSq);
6 SSq ← SSq

⋃
compute SS(Gq,Mq, Aq

′);
7 SR← get safest route(v,N, SSq, Qp);
8 v ← get last vertex(SR);
9 end

10 return SR;

B. Iterative Optimal Algorithm (It OA)
It OA enhances user privacy by reducing the shared pSSs

with the QR as it does not need to know the SSs of all
grid cells in Aq . Algorithm 2 shows the pseudocode for
It OA. Similar to Dir OA, It OA computes N ′, Aq , Gq ,
and Mq . It OA does not apply the binary search to further
refine N ′ as it avoids retrieving the pSSs of all grid cells
in Aq . It OA gradually retrieves the pSSs from the group
members only for the grid cells that are required for finding
SR. Another advantage of It OA is that it only involves those
group members who know about the required grid cells.

It OA iteratively searches for the SR in N ′ using a
priority queue Qp like Dir OA. It OA expands the search

by exploring the outgoing edges of v. Initially v is s and
later v represents the last vertex of the dequeued route
from Qp. In each iteration, It OA identifies the grid cells
in Aq

′ through which those outgoing edges pass (Function
find required cells), and computes their SSs by retrieving
pSSs from the group members (Function compute SS). Next,
using Function get safest route, It OA forms the new routes
by adding the outgoing edges of v at the end of the last
dequeued route, and enqueues them into Qp if they are not
pruned using the conditions stated for Dir OA. At the end,
the function dequeues a route from Qp for using in the next
iteration. The search for SR ends if the last vertex of the
dequeued route is d.

It OA increases the communication frequency of the QR
with the relevant group members. To mitigate this issue,
we introduce a parameter Xit that trades off between the
communication frequency and the number of pSSs shared
with the QR. For Xit = 1, the algorithm considers only the
outgoing edges of the last vertex v of the dequeued route for
identifying the grid cells for which the pSSs will be retrieved.
For Xit > 1, the algorithm repeats the process Xit times by
considering the outgoing edges of the last vertices of the newly
formed routes. We decide the value of Xit in experiments.

Algorithm 3: SS HA(s, d, δ, N , H)

1 N ′, Aq ← compute query area(s, d, δ,N);
2 Gq,Mq ← retrieve query group(Aq);
3 SSq,Mq

′, Aq
′ ← process SS(Gq,Mq, Aq, H);

4 SSq ← update SS(Gq,Mq
′, Aq

′, SSq, H);
5 N ′′ ← refine query area(s, d, δ,N ′, SSq);
6 SR← compute safest route(s, d, δ,N ′′, SSq);
7 return SR;

C. Safety Score based Heuristic Algorithm (SS HA)

SS HA considers SSs upto H (−S < H < S) for
ranking the routes in terms of safety. Algorithm 3 shows the
pseudocode for SS HA. SS HA works in the similar way as
Dir OA except the process of retrieving pSSs and computing
the SSs using Functions process SS and update SS.

Function process SS divides the range (H, S] into equal-
sized bins and shares them with the group members. If the
pSS of a group member’s known grid cell in Aq is less than
or equal to H , then the user shares it with the QR. Otherwise,
the group member shares in which bin the known grid cell
belongs to. After retrieving pSS related information from the
group members, the function computes either exact or the
lower bound of the SS for the grid cells and returns them
as SSq . The function also returns Aq

′ and Mq
′, where Aq

′

represents the grid cells whose lower bounds of SSs are equal
to H and Mq

′ includes grid cell wise group members who
have not shared exact pSSs for the corresponding grid cell
in Aq

′. Function update SS retrieves actual pSSs from those
group members and computes exact SSs for grid cells in Aq

′.
At this stage, the QR knows all SSs that are less than or

equal to H . Finally, Function compute safest route finds the
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SR by considering the lower bound of SSs as the SSs of the
grid cells, whose actual SSs are not known. Thus, SS HA re-
veals less pSSs than that of Dir OA with similar computation
time and slightly increased communication frequency.

D. Complexity Analysis
The compute safest route function in Dir OA and SS HA

algorithms can be drawn as a tree where the source node is
the root and the destination node is in the last level. If the
average branching factor is b and the average depth of a route
from s to d is p then, Qp will be dequeued 1+b+b2 + . . .+bp

times. Thus, the runtime complexity will be O(bp). Since we
utilize two pruning techniques due to which the average depth
reduces, the complexity becomes O(bp/r), where r = r1 ∗ r2.
The factors r1 and r2 represent the effect of our first and
second pruning techniques, respectively. In It OA, edges are
expanded till Xit depth along with the first pruning in Function
find required cells, whose runtime complexity is O(bXit/r1).
Thus, the runtime complexity of It OA is O(b

p
r +

Xit
r1 ).

VIII. PRIVACY ANALYSIS

Our solution ensures that an unsafe event type that a user
faces cannot be inferred from the user’s pSSs and KSs. A KS
does not reveal the frequency and the time of the user’s visits
(event) in an area. It only discloses whether the user visited an
area or not. Thus, even if the adversary knows that an unsafe
event occurs at a grid cell, the user’s KS for the grid cell does
not provide any clue for the adversary to associate the unsafe
event with the user and reverse engineer the user’s pSS.

Quantification model parameters like the impact of an event
type (ξ), recency (rd and ∆d), frequency, and the distance
between the grid cell location and the event location (dist)
contribute to the computation of pSSs based on the events that
a user has encountered (please see Section V). The following
lemma shows the condition required for hiding an unsafe event
type that a user encounters from others.

Lemma 1. Given a user’s revealed pSS Ψ for a grid cell
and the values for quantification model parameters: ξ, rd and
∆d, the unsafe event type that a user encounters cannot be
inferred from Ψ if (i) more than one event combinations cause
the model to result in Ψ and (ii) every unsafe event type is not
included in at least one event combination that result in Ψ.
Proof. The contribution factors of the model parameters in
computing a pSS change with the type, location, time and
frequency of an event in an event combination, where an
event combination consists of any number of events. Since
an adversary does not know about any unsafe event faced
by the user, the adversary cannot identify the actual event
combination that results in Ψ for the user and infer the user’s
unsafe event type from the combination. Again, if an unsafe
event type is included in all possible event combinations that
result in Ψ then the adversary can easily identify the user’s
unsafe event type. However, the second condition ensures that
an unsafe event type is not included in at least one event
combination that result in Ψ and thus, does not allow the
adversary to infer the user’s unsafe event type from Ψ.

Thus, our system can refrain others from knowing the unsafe
event type that a user encounters by selecting the values for
the model parameters in a way that satisfies the condition of
Lemma 1 for every possible pSS in the range [−S, S].

Empirical method. We show an empirical method that can
validate whether the chosen values for the model parameters
are appropriate for ensuring privacy. Since an adversary does
not know a user’s events, it is sufficient to do the validation
for any event setting. Without loss of generality, we consider
the events of 3 days, where one event occurs per day in a grid
cell. We allow dist for an event to be either 0 or 1. For every
pSS, we compute the possible event combinations that result in
the pSS and checks whether the lemma condition is satisfied.
For simplicity, we assume that there are three event types with
impact {−3,−5,+2}, rd = 0.5 and ∆d = 1. For the above-
mentioned event setting and parameter values, we find that
the condition of Lemma 1 is satisfied for every pSS, and the
number of event combinations per pSS is in the range [304k,
4724k] and the average is 2869k. We leave the detailed study
for generating the rules for selecting the parameter values that
satisfy Lemma 1 as our future work.

In our system, the following measures further enhance the
privacy of user data related to the user’s travel experience.
• We refine the search space and minimize the number of

shared pSSs with the QR. Since a negative pSS reveals
that a user faced an unsafe event (not the type), reducing
the number of shared pSSs enhances user privacy.

• In our system, a user shares pSSs with the QR instead
of a centralized server (CS). A CS is fixed and thus, a
user would not feel comfortable to share all pSSs with
the CS, whereas a QR changes with a query and the user
only shares limited query-relevant pSSs with the QR.

• We assign temporary ids to the group members so that
when a QR runs multiple queries, the QR cannot accu-
mulate a group member’s data from multiple queries.

• The user can choose not to share her the KSs for sensitive
areas with the CS.

Our solution does not need to store the event data. It transforms
a user’s events to pSSs and stores them on the local device.
Thus, an adversary can only retrieve a user’s pSSs by applying
a malicious attack on the local device. It is not possible to infer
the unsafe event type that the user encounters from the pSSs.

IX. EXPERIMENTS

We evaluate our safe route planner on real datasets with
experiments in both simulated and real environments. Since
there is no solution that can find the SRs in our problem
setting (please see Section III), we evaluate the performance
of our query processing algorithms by varying a wide range
of parameters. We compare our solution with the centralized
model and show the impact of the missing data on the quality
of the SRs. Finally, we show the applicability of our solution
in real environments using our implemented prototype.

A. Datasets and Parameters
1) Datasets: We use datasets of three cities: Chicago (C),

Philadelphia (P) and Beijing (B). To simulate the environment,
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TABLE III: Datasets
Dataset

(30 days) #Users #Checkins #Crimes Road Network
#Nodes #Edges

Chicago (C) 3554 60922 30843 28468 74751
Beijing (B) 87 - - 33923 75131
Philadelphia (P) 2275 26923 82363 24800 59987

for each dataset, we need the road network data, the crime
data, and the users’ visit data to different areas. We use
OpenStreetMap [21] to download the road networks. We use
the real crime data of Chicago1and Philadelphia2. For Beijing,
instead of crime data, only the locations of crime hotspots3 are
available. We identify the crime hotspots of Chicago using k-
means clustering [22] and create similar hotspots around the
Beijing hotspots’ locations. We generate daily crimes around
the hotspots of Beijing following the distribution of Chicago.

For the users’ visit data to different areas, we use the day-
to-day Foursquare check-in dataset [23], [24] for Chicago and
Philadelphia, and real trajectory data of users for Beijing [25].
We use crime and check-in data of the same 6 months for
Chicago and Philadelphia and one year trajectory data of
87 users for Beijing. To increase the number of events, we
map these data to one month, otherwise, their effects will
not be visible due to decay. The details of these datasets
are summarized in Table III. We use datasets of three cities
to show the performance of our solution irrespective of the
variation in the number of users, check-in and crime data.

From check-in data, we generate the users’ visits. Specif-
ically, we take two consecutive check-ins of a user in a day
and generate an elliptical area, where the foci of the ellipse are
located at the check-in locations and the length of the major
axis equals to 1.25 times of the distance between two check-in
locations. We consider that the user visited the grid cells in
the elliptical area. On the other hand, the user trajectories in
Beijing directly provides the grid cell area visited by the users.
Since most of the trajectory data is located around the center of
Beijing city, we consider the area ([39.7, 40.12, 116.1, 116.6])
around the center of Beijing for our experiments.

We normalize the crime count in the range [0,1] per grid
cell for each day. This count represents the crime probability
of each grid cell. For each grid cell, according to the crime
probability, we randomly associate the crime events with the
visits of the users. Thus, the probability of experiencing crime
in a grid cell increases for a user who visits the cell multiple
times. The visits of the users that are not associated with any
crime are considered as safe events. The pSSs are calculated
based on the model of Section V. We choose the model
parameters in a way that satisfies Lemma1 for every pSS.

2) Parameters: We show the parameters’ default values and
ranges in Table IV. Similar to [4], we vary the query distance
dq , the Euclidean Distance between s and d, from 1 to 5. The
parameter dG represents the grid size: dG × dG. The range
of dG changes the grid cell area within 30x30 to 150x150

1https://data.cityofchicago.org/Public-Safety/
Crimes-2001-to-present-Dashboard/5cd6-ry5g

2https://www.opendataphilly.org/dataset/crime-incidents
3http://www.ecns.cn/cns-wire/2013/07-12/72886.shtml

TABLE IV: Parameter settings
Metric Range Default
Query Distance, dq (km) 1, 2, 3, 4, 5 5
Grid Size, dG 300, 500, 800 500
Distance Constraint, δ 1.1, 1.2, 1.3, 1.4, 1.5 1.2
Confidence Level Parameter, z (%) 25, 50, 75, 100 50
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Fig. 5: Choosing default value Xit = 15 based on the effects of Xit

square meter and we vary dG to show the impact of the grid
resolution (and the grid cell area) on our solution performance.
The distance constraint δ represents the ratio of the allowed
road network distance of the safest route and the road network
distance of the shortest route from s to d. We keep δ at most
1.5 as a user may not feel comfortable to travel longer than
1.5 times of the shortest distance. The parameter z is used
for confidence level (Section IX-C2). For each experiment,
we set S = 10 because a smaller S does not capture the
variation of safety and a large S increases the computation
cost by adding insignificant detail. We generate 100 safest
route queries randomly and take the average performance. Our
system is written in Java. We run our experiments on an Intel
Core i7-7770U 3.60 GHz CPU and 16GB RAM machine.

B. Comparison of Query Evaluation Algorithms

We provide two optimal and one heuristic query processing
algorithms, Dir OA, It OA and SS HA, respectively. We
compare the algorithms based on runtime, communication
frequency per involved group member (comm. freq.), and the
total number of revealed pSSs. The less the number of revealed
pSSs, the better the privacy is. We append the initial letter of
the dataset after the algorithm name with a hyphen in Fig. 6.

1) Choosing the default value of Xit: Xit significantly
impacts the performance of It OA. Fig. 5 shows clear trade-
offs among performance metrics for Chicago. The runtime in-
creases exponentially (undesirable), the comm. freq. decreases
(desirable) and more pSSs are revealed (undesirable) with the
increase of Xit. Thus, we have to carefully choose a value for
Xit so that the comm. freq. is low, and the runtime and the
number of revealed pSSs are reasonable. We choose Xit = 15
as the default value for the Chicago dataset because we see
a sharp increase in the runtime for Xit > 15. In the similar
way, for Beijing and Philadelphia, we choose the default values
Xit = 20 and Xit = 10, respectively (not shown).

2) Comparison of Dir OA and It OA: Fig. 6a- 6c shows
that It OA reveals around 47% of the revealed pSSs in
Dir OA. The number of revealed pSSs increases with an
increase of δ and dq because the route length increases. The
number of revealed pSSs also increases for large dG because
the number grid cells through which the route passes increases.
Please note that the number of revealed pSSs increases more
rapidly for Dir OA than that of It OA.

237



1.1 1.2 1.3 1.4 1.5
0

0.5

1

1.5

2

2.5
·106

δ

#p
SS

s
R

ev
ea

le
d

Dir OA-C It OA-C
Dir OA-B It OA-B
Dir OA-P It OA-P

(a)

1 2 3 4 5
0

0.2
0.4
0.6
0.8
1

1.2
1.4

·106

dq
#p

SS
s

R
ev

ea
le

d

Dir OA-C
It OA-C

Dir OA-B
It OA-B

Dir OA-P
It OA-P

(b)
300 500 800

0

0.5

1

1.5

2

2.5

3
·106

dG

#p
SS

s
R

ev
ea

le
d

Dir OA-C It OA-C
Dir OA-B It OA-B
Dir OA-P It OA-P

(c)

1.1 1.2 1.3 1.4 1.5
0

100

200

300

400

δ

C
om

m
.F

re
q.

It OA-C
It OA-B
It OA-P

(d)

1 2 3 4 5
0

50

100

150

200

250

300

dq

C
om

m
. F

re
q.

It OA-C
It OA-B
It OA-P

(e)

300 500 800
0
50
100
150
200
250
300
350

dG

C
om

m
.F

re
q.

It OA-C
It OA-B
It OA-P

(f)

1.1 1.2 1.3 1.4 1.5
0

15

30

45

60

75

90

δ

R
un

tim
e

(s
ec

.)

Dir OA-C It OA-C
Dir OA-B It OA-B
Dir OA-P It OA-P

(g)

1 2 3 4 5
0

5

10

15

20

25

dq

R
un

tim
e

(s
ec

.)

Dir OA-C
It OA-C

Dir OA-B
It OA-B

Dir OA-P
It OA-P

(h)
300 500 800

0

5

10

15

20

25

30

dG

R
un

tim
e

(s
ec

.)

Dir OA-C It OA-C
Dir OA-B It OA-B
Dir OA-P It OA-P

(i)

Fig. 6: Dir OA vs. It OA in terms of privacy (#pSSs revealed) and
computation cost (comm.freq. and runtime) for varying δ, dq and dG

Fig. 6d- 6i compare Dir OA and It OA in terms of comm.
freq. and runtime. The comm. freq. is always 1 for Dir OA as
the group-members are requested once to provide pSSs. For
It OA, the comm. freq. is as high as 378.8 times. To check
how reasonable this is, we ran an experiment: a message is sent
from one device to another using Firebase Cloud Messaging
service and a reply from recipient is received. This is a cycle,
and we ran 500 such cycles which took a total of 86641 ms,
so on average, 173.28 milliseconds per cycle. Therefore, 378.8
communications take 378.8 * 173.28 ms ≈ 1 minute, which
is acceptable. The comm. freq. for It OA increases with an
increase of δ, dq and dG. For δ and dq , the reason behind the
increased comm. freq. is the increased route length, whereas
for dG, the reason is the number of required grid cells to
compute the SR increases.

The runtime of Dir OA is very low (on average 1 second)
for all datasets. Though the runtime of It OA increases with
the increase in δ and dq , they are reasonable (on average 14
seconds). For δ = 1.5 in Chicago, it is 1.5 minutes, which is
acceptable. Interestingly, the runtime does not increase with
an increase of dG. Therefore, we conclude that both Dir OA
and It OA provide practical solution for the SR queries and
show a trade-off between runtime and privacy.

TABLE V: Performance of SS HA on three datasets
Dataset Top-3 (%) Revealed

pSS (%)
Comm. Freq. Runtime

(sec.)
C 81.8 80.22 1.967 1.20
B 77.5 61.05 1.762 0.11
P 89.8 79.95 1.966 1.63

3) Performance of SS HA: Since SS HA does not provide
the optimal answer, in addition to the three performance
metrics, we measure the accuracy of the provided answer. The
accuracy is the percentage of answered routes that is one of
the top-3 SRs. We set H = 1 and divide (1, 10] to [2, 4], [5, 7]
and [8, 10] bins and set other parameters to default values. The
performance of SS HA is shown in Table V. The accuracy is
more than 77% for all datasets and at least 20% less pSSs is
revealed compared to Dir OA. The comm. freq. can be at most
2 for SS HA since one group-member is queried for pSSs at
most twice. The runtime of SS HA is in par with Dir OA.
Therefore, SS HA can be a good alternative for quickly finding
SRs with high accuracy and reasonable privacy.

C. Comparison with the Centralized Model

A centralized architecture assumes that users share their
travel experiences with a centralized server (CS) without
considering privacy issues. However, in reality, this does not
happen and the centralized solution has missing data. We
investigate the impact of missing data on the quality of SRs.

As mentioned before, there exists no solution for finding
SRs in our problem setting. Thus, for this experiment, we
adopt our solution for the centralized model, where users share
pSSs with the CS. We compare the accuracy and confidence
level of our system with the centralized architecture. We vary
the percentage of available data for the centralized model as
50%, 60%, 70%, 80%, and 90% and denote them with C50,
C60, C70, C80, and C90, respectively.

1) Accuracy: In our system, users do not hesitate to share
their pSSs as there is no fear of privacy violation. Thus, our
system always provides the actual SR. We measure the accu-
racy as the percentage of the answers that are within the top-5
SRs. Fig. 7 shows that the average accuracy increases with
an increase in user data (29% for C50 and 48.6% for C90).
Even 10% missing data causes significant (51.4%) accuracy
loss. Hence it is important to adopt privacy preserving solution
to find the SRs. For the same amount of available data, the
accuracy decreases with the increase of δ and dq , because the
number of possible routes from s to d increases. The accuracy
does not depend on dG (Fig. 7c, 7f, 7i).

2) Confidence Level (CL): The confidence level of a query
answer expresses its reliability from the viewpoint of a QR.
In our case, the more the number of users supports an answer,
the more reliable it is to the QR. For a route R, its confidence
level CL(R) is expressed as follows.

CL(R) =
100

z
×
∑

ci
li ×mci

dist(R)×m

Here, li is the length of R that crosses grid cell ci and mci

is the number of group members who know ci. Intuitively, the
CL indicates the average percentage of query relevant group
members who know each unit length of the route. The QR
might be satisfied when on average z% members among the
m query relevant group members know about each unit length.
Thus, we include z in the definition of the CL.
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Fig. 7: Accuracy loss in the centralized model for missing data. C50
means 50% of actual data is present.
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Fig. 8: CL for our system is higher than that of the centralized model.

Fig. 8 shows that the CL for our system is always the highest
(on average 86.6%). Since both Dir OA and It OA provide
optimal solutions, their CL is the same. In the centralized
model, CL predictably increases with the increase of missing
data. CL decreases when the SRs become longer (for δ and
dq). No particular trend is visible for dG. Philadelphia dataset
shows same trends as Chicago (not shown).

D. Effect of Different Datasets

The datasets in our experiments provide variation in the
number of users and road network structure and size. The
runtime (Fig. 6) increases for Chicago (3554 users) due to
more users compared to Beijing (87 users) even though the
runtime is still reasonable. Both comm. freq. and the number
of revealed pSSs are the highest for Philadelphia (Fig. 6),
which does not have the highest number of users or road
network size (Table III). Therefore, these two metrics might
have been affected by the road network structure. The CL is
less for Beijing than other datasets (Fig. 8), which shows its
dependency on the number of users.

E. Prototype

We implemented a prototype of our system. When a user
starts travelling via a route, we temporally store the route
trajectory as shown in Fig. 9a until the user shares her
experiences on different points of the trajectory, or press the
done button to indicate that the travel was safe (Fig. 9b).
The user initiates an SR query in Fig. 9c and it is answered
in Fig. 9d. We test Dir OA and It OA with this prototype
in a pedestrian scenario for 5 users. Their experiences were
assigned from top-5 users’ 10 days data of the Chicago dataset.
We set Xit = 5 and run 30 queries. We observe that Dir OA
takes 2.03 seconds and It OA takes 3.29 seconds per query
on average, which is very reasonable for the SR query. The
communication frequency is 5.11 for the iterative approach on
average and 1 for Dir OA in all queries. Finally, It OA reveals
only 31.69% of pSSs revealed by Dir OA, and thus enhances
privacy within reasonable query processing time.

X. EXTENSION

Our algorithms can be adopted for a variant of the SR
query that takes γ, the minimum required SS for the route
as input and returns the shortest route that satisfies γ. An SR
query guarantees that the minimum SS of the returned SR is
better than that of any other route within δ. If a user wants to
maximize her safety on roads within δ, the user would prefer
the SR query, whereas a user who wants to fix the minimum
required SS would prefer the SR query variant. However, it
would be hard to decide γ without having the idea of the
safety condition of an area as for the inappropriate choice of
γ the variant of the SR query may not find any route that
meets γ. Our algorithms for the SR query can be applied by
finding the shortest route in the graph with the edges whose
minimum SS is greater than or equal to the required minimum
SS of the user. Since the variant of the SR query is orthogonal
to the main focus of this paper, we leave the detail study of
this variant of the SR query as our future work.

XI. CONCLUSION

We developed a novel journey planner for finding SRs
with crowdsourced data and computation. In experiments, we
observe that data scarcity problem can have a significant
impact on lowering the quality of SRs. For example, the actual
SR is only identified for on average 36% and 41% times when
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Fig. 9: Safe Route Prototype

a centralized route planner has 30% and 20% missing data,
respectively. Our privacy-enhanced solution encourages more
users to share their data and improve the quality of the SRs.

Experiments show that our approach can evaluate a query
in seconds. Our iterative query processing algorithm enhances
user privacy by not revealing, on average, 53% of the pSSs
revealed by the direct query processing algorithm. The direct
one is better than the iterative algorithm in terms of the
processing time and communication frequency. The commu-
nication frequency and the number of revealed pSSs in the
heuristic algorithm are in between those of the direct and
iterative algorithms.
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