
Chapter 2

Garbage Collection

Garbage collection is an essential component of modern high-level languages, en-
abling strong type-safety and memory-safety guarantees. However, garbage collec-
tion has the potential to adversely affect performance, in terms of throughput, respon-
siveness, and predictability. This chapter provides an overview of garbage collection,
covering fundamental algorithms and mechanisms. The focus is on garbage collec-
tion approaches that have the potential to address all of these performance criteria
simultaneously, yielding predictable, highly-responsive, high-throughput systems.

Section 2.1 provides a brief overview of garbage collection, defines necessary
terminology, and introduces fundamental algorithms and mechanisms. Section 2.2 dis-
cusses the performance requirements of low-level programs with respect to garbage
collection. Sections 2.3 and 2.4 then describe garbage collection techniques that have
the potential to meet the particular performance requirements of low-level program-
ming. Section 2.3 discusses work on incremental and concurrent tracing garbage col-
lection: techniques that allow garbage collection to proceed alongside application
activity. Section 2.4 then describes an alternative approach based on reference count-
ing, an inherently incremental approach to garbage collection often used in low-level
programming.

2.1 The Anatomy of a Garbage Collector

This section provides a brief overview of garbage collection terminology, algorithms,
and mechanisms. For a more complete discussion of the fundamentals of garbage
collection see “Garbage Collection: Algorithms for Automatic Dynamic Memory
Management” [Jones and Lins, 1996], and “Uniprocessor Garbage Collection Tech-
niques” [Wilson, 1992].

Programs require data to execute, and this data is typically stored in memory.
Memory can be allocated statically (where memory requirements are fixed ahead-
of-time), on the stack (tightly binding the lifetime of the data to the currently ex-
ecuting method), or dynamically, where memory requirements are determined dur-
ing execution—potentially changing between individual executions of the same pro-
gram. This dynamically allocated heap memory can be explicitly managed by the
program (through primitives such as the C functions malloc and free), or it can be

5



6 Garbage Collection

Garbage Collected Heap

Node

Edge

Root

Garbage

Figure 2.1: An object graph, showing nodes, edges, and a root.

automatically managed through the use of a garbage collector.

Garbage collection takes the burden of explicitly managing memory away from
the programmer. While there are many cases in which this burden is insignificant,
complex systems with large, shared data-structures make the explicit management of
memory both an onerous and error-prone task. The need to manage memory explic-
itly also compromises software design, forcing additional communication between
modules in order to ensure that a global consensus is reached before any shared data
is freed.

The role of the garbage collector is to reclaim memory that is no longer required
by the application. To assist the discussion of garbage collection, we will view all
objects in memory as a directed graph as shown in Figure 2.1. Objects are represented
as nodes, and references between objects are represented as directed edges. There are
also edges originating from outside the object graph—such as values held in program
variables—which are known as roots. In accordance with the terminology of Dijkstra
et al. [1978], application threads that manipulate this object graph (by allocating new
objects and changing the set of edges) are known as mutators, while threads that
perform garbage collection work are known as collectors.

Determining precisely when an object will no longer be accessed is difficult in
general, so garbage collectors rely on a conservative approximation based on reacha-
bility. Any object that is unreachable—that is, there is no path from a root to the node
over the edges in the graph—can never be accessed again by the application, and
may therefore be safely reclaimed.



§2.1 The Anatomy of a Garbage Collector 7

2.1.1 Taxonomy of Garbage Collection Algorithms

Memory management approaches can be categorized based on how they solve three
key sub-problems: object allocation, garbage identification, and garbage reclamation.
Naturally, approaches to each of these sub-problems have a synergistic relationship
with solutions to other sub-problems. Many memory management approaches are
hybrids, drawing on several approaches to each of these sub-problems.

2.1.1.1 Object Allocation

There are two fundamental techniques used for object allocation—bump pointer allo-
cation, and free list allocation.

Bump pointer allocation. Under bump pointer allocation (see Figure 2.2), memory
is allocated by running a cursor across memory, bumping the cursor by the size of each
allocation request. Bump pointer allocation is simple and fast at allocation time, but
provides no facility for incremental freeing. Given the simplicity of the approach,
the design space for bump pointer allocation is quite restricted. One key design
consideration is the approach used to allow parallel allocation. Bump pointer alloca-
tion schemes generally perform synchronized allocation of larger chunks [Garthwaite
and White, 1998; Alpern et al., 1999; Berger et al., 2000], which are then assigned to
a single thread—allowing fast, unsynchronized bump pointer allocation within the
chunk.

Cursor

Allocated Free

Figure 2.2: Bump pointer allocation.

Free list allocation. Under free list allocation (see Figure 2.3), memory is divided
into cells, which are then maintained in a list—the free list. Throughout this thesis,
the free list structure of most interest is the segregated free list, such as that described
by Boehm and Weiser [1988].1 The segregated free list scheme (described as a two-
level allocation scheme by Jones and Lins [1996]) attempts to balance the concerns of
fragmentation and throughput performance. In a segregated free list scheme an allo-
cator manages multiple free lists, each containing a list of empty cells of a single fixed

1The design space for free list allocation is large; refer to Jones and Lins [1996] or Wilson et al. [1995]
for a more complete discussion.



8 Garbage Collection

size. Because each list contains cells of a fixed size, allocation is fast and no search-
ing is required. Memory is divided up into larger blocks, each containing cells of a
fixed size. Blocks are then managed on a block free list, with empty blocks available
for use by any size class. This structure addresses fragmentation for most programs,
failing only when a program: 1) allocates many objects of a given size class; 2) keeps
a small fraction alive (pinning down many blocks); and then 3) changes allocation
patterns to allocate many objects of different size classes. This pathology is generally
rare and can be addressed through some form of copying collection.

Head

Figure 2.3: Free list allocation.

2.1.1.2 Garbage Identification

There are two fundamental techniques for identifying garbage data: reference counting
and tracing. Each of these techniques forms the basis for one or more of the canonical
garbage collection algorithms described in more detail in Section 2.1.2.

Reference counting. This method directly identifies garbage. Each object has a ref-
erence count, which keeps track of the number of references (incoming edges) to that
object in the object graph. When a reference count falls to zero, the associated object
can be considered garbage.

Tracing. This method indirectly identifies garbage by directly identifying all live
objects. Tracing involves performing a transitive closure across some part of the ob-
ject graph—visiting all objects transitively reachable from some set of root edges—
identifying each visited object as live. All objects that were not visited during the
trace are identified as garbage.

2.1.1.3 Garbage Reclamation

Once objects have been allocated, and those that need to be collected have been
identified, there are several techniques that can be used to reclaim the space.

Direct to free list. For direct garbage collection approaches (e.g., reference count-
ing) it is possible to directly return the space for objects to a free list.



§2.1 The Anatomy of a Garbage Collector 9

Evacuation. Live objects can be evacuated from a region of memory, which once
emptied of live data, may be reclaimed in its entirety. This approach requires another
region of memory into which the live objects can be copied. Evacuation can be
particularly effective when there are very few survivors, and naturally aligns itself
with tracing as the approach for identification.

Compaction. Compaction rearranges the memory within the region in-place to al-
low future allocation into the region. A classic example is sliding compaction [Styger,
1967; Abrahams et al., 1966] where all live data is compressed into a contiguous
chunk of used memory, leaving a contiguous chunk of memory free for future allo-
cation.

Sweep. A sweep is a traversal over allocated objects in the heap, freeing the space
associated with objects that have been identified as garbage. Some form of sweep
is required by many tracing approaches, because garbage is not identified directly.
While sweep generally operates over individual free list cells, it is also possible to
use the sweep approach on larger regions of memory.

2.1.2 Canonical Algorithms

This section briefly introduces canonical algorithms that cover the design space laid
out above.

2.1.2.1 Reference Counting

One of the classic forms of garbage collection is reference counting [Collins, 1960].
Recall from above that reference counting works by keeping track of the number of
incoming edges—or references—to each node in the object graph. When this count
drops to zero, the object is known to be unreachable and may be collected. Figure 2.4
shows an object graph with reference counts calculated, and also demonstrates the
fundamental weakness of reference counting: cyclic garbage. The objects X and Y are
clearly unreachable (there is no path to either of them from any root) but they will
never be collected because they still hold counted references to each other. Unless
additional work is performed to identify and collect it, cyclic garbage can cause
memory leaks.

Reference counting is of particular interest for high-level low-level programming,
and is discussed in detail in Section 2.4. It is inherently incremental, and uses
object-local information only, rather than requiring any global computation. Explicit
reference counting—where the programmer manually manipulates reference count
information—is a proven approach for low-level programming, extensively used for
managing data structures in low-level software written in languages such as C and
C++.



10 Garbage Collection

RC = 3

RC = 1

RC = 0

RC = 1

YRC = 1

X

RC = 1

Reference Counted Heap

Cyclic Garbage

RC : Reference Count

Figure 2.4: An object graph showing reference counts and cyclic garbage.

2.1.2.2 Mark-Sweep

Mark-sweep collection [McCarthy, 1960] is a tracing collection approach that runs in
two simple phases:

1. A mark phase, which performs a transitive closure over the object graph, mark-
ing objects as they are visited.

2. A sweep phase, where all objects in the heap are checked, and any that are
not marked are unreachable and may be collected. It is possible for part of
this sweeping phase to be performed during execution, a technique called lazy
sweeping which reduces garbage collector time, and can actually improve over-
all performance, due to the sweep operation and subsequent allocations being
performed on the same page, improving cache behavior.

Mark-sweep collection is efficient at collection time, but forces the mutator to allo-
cate objects in the discovered holes surrounding live objects. This can result in lower
allocation performance, as well as generally exhibiting poor locality of reference due
to objects being spread over the heap. Over time, mark-sweep can also encounter
problems with fragmentation—even though the sum total of available memory may
be sufficient, an empty, contiguous region of sufficient size may not be available.

2.1.2.3 Semi-Space

Semi-space collection is also based on tracing, but uses a very different approach
to reclaim memory. Memory is logically divided into two equally sized regions.



§2.1 The Anatomy of a Garbage Collector 11

During program execution one region contains objects, while the other region is
empty. When garbage collection is triggered, the region containing objects is labeled
as the from-space and the empty region is labeled as the to-space. Garbage collection
proceeds by performing a transitive closure over the object graph, copying all nodes
encountered in from-space into to-space—updating all edges to point to the copied
objects in to-space. At the end of collection all reachable objects have been copied out
and saved, and all that remains in the from-space is unused. This from-space is now
considered empty, and the to-space contains all live objects: a reversal of the roles of
the two regions prior to the collection. Initial implementations of copying collectors
used a recursive algorithm [Minsky, 1963; Fenichel and Yochelson, 1969] but a simple
iterative algorithm was later introduced by Cheney [1970]. In comparison to mark-
sweep collection, semi-space collection:

• makes less efficient use of memory as it must hold 50% percent of total memory
as a copy reserve to ensure there is space to copy all objects in the worst case;

• can be more expensive at collection time because all live objects must be copied;

• can be cheaper at collection time if very few objects survive, because no sweep
phase is required;

• can utilize efficient bump pointer allocation, because free memory is always
maintained as a contiguous block; and

• has less problems with fragmentation, because live objects are copied into a
contiguous chunk of memory.

2.1.2.4 Mark-Compact

Mark-compact collection aims to combine the benefits of both semi-space and mark-
sweep collection. It addresses fragmentation often seen in mark-sweep by compacting
objects into contiguous regions of memory, but it does so in place rather than relying
on the large copy reserve required by semi-space collection. While this in-place tran-
sition saves space, it typically involves significant additional collection effort. This is
because additional care must be taken to ensure that the target location of a copied
object does not contain live data. A simple form is sliding compaction, which logi-
cally compresses all live objects—in allocation order—into a single contiguous chunk.
A simple sliding compaction algorithm—known as the LISP-2 algorithm [Styger,
1967]—proceeds as follows, with the state at the conclusion of key phases shown
in Figure 2.5:

1. A mark phase, which performs a transitive closure over the object graph, mark-
ing objects as they are visited.

2. A compute-forwarding-pointers phase, where objects are processed in address order
and the future location of each marked object is calculated. The calculation
occurs by simply incrementing a cursor by the size of each live object as it is
encountered.



12 Garbage Collection

Live Objects

DA B C

Allocation Cursor

(a) After the mark phase.

DA B C

(b) After the compute-forwarding-pointers phase.

DA B C

Allocation Cursor

(c) After the relocate phase.

Figure 2.5: Sliding compacting collection.



§2.1 The Anatomy of a Garbage Collector 13

3. A forwarding phase, where all pointers are updated to reflect the addresses
calculated in the previous phase. Note that after this phase all references point
to future locations of objects, rather than the current location.

4. A relocation phase, where objects are copied to their target locations in address
order. The address order is important as it ensures that the target location does
not contain live data.

The additional phases of simple compaction algorithms make them significantly
more expensive than simple mark-sweep or semi-space collection. While there have
been many attempts to reduce this cost—by optimizing the phases, reducing the
number of phases, or by implementing the phases as operations on compact repre-
sentations of the heap [Kermany and Petrank, 2006]—compaction is rarely used as
the sole collection strategy in a high-performance system. Compaction is, however,
commonly combined with mark-sweep collection (to provide a means to escape frag-
mentation issues), and is often used alongside semi-space collection [Sansom, 1991]
to allow execution to continue when memory is tight.

2.1.2.5 Mark-Region

Mark-Region is a collection approach that combines contiguous allocation and non-
copying tracing collection. The motivation of this approach is to combine the mutator
performance of semi-space with the collection performance of mark-sweep. In terms
of allocation, mark-region is similar to semi-space, with objects allocated into con-
tiguous regions of memory using a bump pointer. In terms of collection, mark-region
is similar to mark-sweep, but sweeps entire regions; regions with no reachable objects
are made available again for contiguous allocation. Immix [Blackburn and McKin-
ley, 2008] provides the first detailed analysis and description of a mark-region col-
lector, although a mark-region approach was previously used in JRockit [Oracle] and
IBM [Borman, 2002] production virtual machines. A mark-region collection proceeds
as follows:

1. A mark phase, which performs a transitive closure over the object graph, mark-
ing regions which contain live objects as each object is visited.

2. A sweep phase, where regions that were not marked in the previous phase are
made available for future contiguous allocation.

The mark-region approach is susceptible to issues with fragmentation, because
it may not be possible to discover large contiguous blocks to allow efficient bump
pointer allocation. To combat this, mark-region collectors often employ techniques to
relocate objects in memory to reduce fragmentation. The JRockit collector performs
compaction of a fraction of the heap at each collection, the IBM collector performs
whole heap compaction when necessary, and Immix performs lightweight defrag-
mentation as required when memory is in demand.



14 Garbage Collection

2.1.3 Generational Collection

Generational garbage collection [Lieberman and Hewitt, 1983; Moon, 1984; Ungar,
1984] is perhaps the single most important advance in garbage collection since the
first collectors were developed in the early 1960s. The generational hypothesis states
that most objects have very short lifetimes. Generational collectors are optimized
for when this hypothesis holds, and thereby attain greater collection efficiency by
focusing collection effort on the most recently allocated objects.

Generational collectors partition the heap into generations based on allocation age.
This thesis considers only the basic form of generational collection, where the heap
is divided into two generations: the nursery—containing the most recently allocated
set of objects—and the mature area—containing all other objects. In order to indepen-
dently collect the nursery, generational collectors must remember all pointers from
the mature space into the nursery. This can be achieved by building a remembered set
of pointers created into the nursery, or by remembering regions of the mature space
(usually referred to as cards) that contain nursery pointers, and must be scanned at
nursery collection time. References from the mature space into the nursery, in combi-
nation with any other roots (e.g., program variables), then provide the starting point
for a transitive closure across all live objects within the nursery. A partial copying
collection can be performed during this closure, with live objects evacuated from the
nursery into the mature space. When the generational hypothesis holds, this collec-
tion is very efficient because only a small fraction of nursery objects must be copied
into the mature area.

2.1.4 Barriers

Barriers are operations that are injected into mutator code surrounding mutator op-
erations that may affect the garbage collector. Barriers are most commonly inserted
on read and write operations, and are essential tools for more powerful garbage col-
lection algorithms. In reference counting collectors, reference write barriers can be
used to perform necessary reference count increments and decrements. Generational
collectors may also rely on reference write barriers to intercept pointers created from
mature objects to nursery objects. Concurrent and incremental garbage collectors
may make extensive use of read and write barriers to keep them informed of poten-
tially destructive changes, and to ensure that mutators are operating on and updating
the appropriate data.

Given the algorithmic power of barriers, it is essential that high-performance
barrier operations be available in order to judge the true cost of a given garbage
collection approach. The performance of barriers is a complex interaction of mul-
tiple factors including the operation itself, how it is optimized (e.g., what portions
are inlined), the behavior of individual applications, and the underlying architec-
ture [Hosking et al., 1992; Blackburn and McKinley, 2002; Blackburn and Hosking,
2004]. It is also possible to elide barriers to improve performance by identifying cases
in which the barrier operation is redundant [Vechev and Bacon, 2004].


