
Down for the Count?
Getting Reference Counting Back in the Ring ∗

Rifat Shahriyar
Australian National University
Rifat.Shahriyar@anu.edu.au

Stephen M. Blackburn
Australian National University
Steve.Blackburn@anu.edu.au

Daniel Frampton
Australian National University
Daniel.Frampton@anu.edu.au

Abstract
Reference counting and tracing are the two fundamental ap-
proaches that have underpinned garbage collection since 1960.
However, despite some compelling advantages, reference count-
ing is almost completely ignored in implementations of high per-
formance systems today. In this paper we take a detailed look at
reference counting to understand its behavior and to improve its
performance. We identify key design choices for reference count-
ing and analyze how the behavior of a wide range of benchmarks
might affect design decisions. As far as we are aware, this is the
first such quantitative study of reference counting. We use insights
gleaned from this analysis to introduce a number of optimizations
that significantly improve the performance of reference counting.

We find that an existing modern implementation of reference
counting has an average 30% overhead compared to tracing, and
that in combination, our optimizations are able to completely elimi-
nate that overhead. This brings the performance of reference count-
ing on par with that of a well tuned mark-sweep collector. We keep
our in-depth analysis of reference counting as general as possible so
that it may be useful to other garbage collector implementers. Our
finding that reference counting can be made directly competitive
with well tuned mark-sweep should shake the community’s preju-
dices about reference counting and perhaps open new opportunities
for exploiting reference counting’s strengths, such as localization
and immediacy of reclamation.

Categories and Subject Descriptors D.3.4 [Programming Languages]:
Processors—Memory management (garbage collection)

General Terms Design, Performance, Algorithms, Measurement

Keywords Reference Counting, Memory Management, Garbage Collection, Java

1. Introduction
In an interesting twist of fate, the two fundamental branches of the
garbage collection family tree were born within months of each
other in 1960, both in the Communications of the ACM [10, 20]. On
the one hand, reference counting [10] directly identifies garbage by
noticing when an object has no references to it, while on the other
hand, tracing [20] identifies live objects and thus only indirectly

∗ This work supported by the Australian Research Council DP0666059.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’12, June 15–16, 2012, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1350-6/12/06. . . $10.00

identifies garbage (those objects that are not live). Reference count-
ing offers a number of distinct advantages over tracing, namely that
it: a) can reclaim objects as soon as they are no longer referenced,
b) is inherently incremental, and c) uses object-local information
rather than global computation. Nonetheless, for a variety of rea-
sons, reference counting is rarely used in high performance settings
and remains somewhat neglected within the garbage collection lit-
erature. The goal of this work is to revisit reference counting, un-
derstand its shortcomings, and address some of its limitations. We
are not aware of any high performance system that relies on ref-
erence counting. However, reference counting is popular among
new languages with relatively simple implementations. The latter
is due to the ease with which naive reference counting can be im-
plemented, while the former is due to reference counting’s limita-
tions. We hope to give new life to this much neglected branch of
the garbage collection literature.

Reference counting works by keeping a count of incoming ref-
erences to each object and collecting objects when their count falls
to zero. Therefore in principle all that is required is a write barrier
that notices each pointer change, decrementing the target object’s
count when a pointer to it is overwritten and incrementing the target
object’s count whenever a pointer to it is created. This algorithm
is simple, inherently incremental, and requires no global compu-
tation. The simplicity of this naive implementation is particularly
attractive and thus widely used, including in well-established sys-
tems such as PHP, Perl and Python. By contrast, tracing collectors
must start with a set of roots, which requires the runtime to enu-
merate all pointers into the heap from global variables, the stacks,
and registers. Root enumeration thus requires deep integration with
the runtime and can be challenging to engineer [14].

Reference counting has two clear limitations. It is unable to
collect cycles of garbage because a cycle of references will self-
sustain non-zero reference counts. We do not address this limita-
tion, which can be overcome with a backup demand-driven tracing
mechanism. However, reference counting is also slow. Naive refer-
ence counting is extremely costly because of the overhead of inter-
cepting every pointer mutation, including those to the registers and
stacks. High performance reference counting overlooks changes to
the stacks and registers [12] and may even elide many changes to
heap references [16]. However, even high performance reference
counting is slow. We compare high performance reference counting
and mark-sweep implementations and find that reference counting
is over 30% slower than its tracing counterpart.

We reconsider reference counting. We start by identifying key
design parameters and evaluating the intrinsic behaviors of Java
workloads with respect to those design points. For example, we
study the distribution of maximum reference counts across Java
benchmarks. Our analysis of benchmark intrinsics motivates three
optimizations: 1) using just a few bits to maintain the reference
count, 2) eliding reference count operations for newly allocated

73

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2258996.2259008&domain=pdf&date_stamp=2012-06-15

objects, and 3) allocating new objects as dead, avoiding a signif-
icant overhead in deallocating them. We then conduct an in-depth
performance analysis of mark-sweep and reference counting, in-
cluding combinations of each of these optimizations. We find that
together these optimizations eliminate the reference counting over-
head, leading to performance consistent with high performance
mark-sweep.

This paper makes the following contributions: 1) we identify
and evaluate key design choices for reference counting implemen-
tations, 2) we conduct an in-depth quantitative study of intrinsic
benchmark behaviors with respect to reference counting, 3) guided
by our analysis, we introduce optimizations that greatly improve
reference counting performance, and 4) we conduct a detailed per-
formance study of reference counting and mark-sweep, showing
that our optimizations eliminate the overhead of reference count-
ing.

We hope that the insights and optimizations brought to light in
this paper may give new life to reference counting. Our detailed
study of intrinsic behaviors will help other garbage collector imple-
menters design more efficient reference counting algorithms. Our
optimizations remove the performance barrier to using reference
counting rather than mark-sweep, thereby making the incremental-
ity, locality, and immediacy of reference counting compelling.

2. Background and Design Space
We now explore the design space for reference counting implemen-
tations. In particular, we explore strategies for: 1) storing the refer-
ence count, 2) maintaining an accurate count, and 3) dealing with
cyclic data structures. We describe each of these and survey major
design alternatives.

2.1 Storing the Count
Each object has a reference count associated with it. This section
considers the choices for storing the count. This design choice is
a trade-off between the space required to store the count, and the
complexity of accurately managing counts when limited bits are
available.

Use a dedicated word per object. By using a dedicated word we
can guarantee that the reference count will never overflow. In a
32-bit address space, in the worst case, if every word of memory
pointed to a single object, the count would only be 230. However,
an additional header word has a significant cost, not only in terms of
space, but also time, as allocation rate is also affected. For example,
the addition of an extra 32-bit word to the object header incurs an
overhead of 2.5% in total time and 6.2% in GC time, on average
across our benchmark suite when using Jikes RVM’s production
garbage collector.

Use a field in each object’s header. Object headers store infor-
mation to support runtime operations such as virtual dispatching,
dynamic type checking, synchronization, and object hashing. Al-
though header bits are valuable, it may be possible to use a small
number of bits to store the reference count. The use of a small num-
ber of bits means that the reference counter must handle overflow,
where a count reaches a value too large for small number of bits.
Two basic strategies to deal with overflow exist: 1) have an auxil-
iary data structure such as a hash table to store accurate counts, 2)
have sticky counts (once they overflow future increments and decre-
ments are ignored). In the latter case, one may depend on a backup
tracing cycle collector to either restore count or directly collect the
object [15].

2.2 Maintaining the Count
Simple, immediate reference counters count all references, both on
the heap and in local variables. Whenever references are created,

copied, destroyed, or overwritten, increment and decrement opera-
tions are performed on the referents. Because such references are
very frequently mutated, immediate reference counting has a high
overhead. However, immediate reference counting needs very min-
imal runtime support, so is a popular implementation choice when
performance is not the highest priority. The algorithm requires just
barriers on every pointer mutation, and the capacity to identify all
pointers within an object when the object dies. The former is easy to
implement, for example through the use of smart pointers in C++,
while the latter can be implemented through a destructor. In con-
trast, tracing collectors must be able to identify all pointers held
in the runtime state, such as those in stacks, registers, and global
variables. To identify all pointers from the stack into the heap, the
runtime must implement GC maps, which are generally difficult to
implement and maintain correctly.

Deferred Deutsch and Bobrow [12] introduced deferred refer-
ence counting. In contrast to the immediate reference counting de-
scribed above, deferred reference counting ignores mutations to
frequently modified variables such as those stored in registers and
on the stack. Periodically, these references are enumerated into a
root set, and any objects that are neither in the root set nor refer-
enced by other objects in the heap may be collected. They achieve
this directly by maintaining a zero count table that holds all objects
known to have a reference count of zero. This zero count table is
enumerated, and any object that does not have a corresponding en-
try in the root set is identified as garbage. Bacon et al. [3] avoid
the need to maintain a zero count table by buffering decrements be-
tween collections. At collection time, elements in the root set are
given a temporary increment while processing all of the buffered
decrements. Deferred reference counting performs all increments
and decrements during collection time. Although much faster than
immediate reference counting, these schemes require GC maps, re-
moving the implementation advantage over tracing.

Coalescing Heap references are mutated very frequently: even
with stack mutations deferred, we measured millions of reference
mutations per second. Levanoni and Petrank [16, 17] observed that
all but the first and last in any chain of mutations to a given ref-
erence within a given window could be coalesced. Only the ini-
tial and final states of the reference are necessary to calculate cor-
rect reference counts: intervening mutations generate increments
and decrements that cancel each other out. This observation can
be exploited by remembering only the initial value of a reference
field between periodic reference counting collections. At each of
these collections, only the objects referred to by the initial (stored)
and current values of the reference field need to be updated. Lev-
anoni and Petrank implemented coalescing using object remember-
ing. The first time an object has a reference modified since the last
collection: a) the mutated object is marked dirty and all outgoing
reference values are remembered; b) all future reference mutations
for that (now dirty) object are ignored; c) during the next collection
the remembered object is scanned, increments are performed on all
outgoing pointers, decrements are performed on all remembered
outgoing references, and the dirty flag is cleared. New objects are
remembered and allocated dirty, ensuring that outgoing references
are incremented at the next collection. No old values are recorded
for new objects because all outgoing references start as null.

Generational Blackburn and McKinley [4] introduced ulterior
reference counting, a hybrid collector that combines copying gen-
erational collection for the young objects and reference counting
for the old objects. It restricts copying and reference counting to
the object demographics for which they perform well and safely
ignores mutations to select heap objects. It can achieve high perfor-
mance with reduced pause time. Ulterior reference counting is not
difficult to implement, but the implementation is a hybrid, and thus

74

manifests the complexities of both a standard copying nursery and
a reference counted heap.

Age-Oriented Paz et al. [21] introduced age oriented collection,
which aimed to exploit the generational hypothesis that most ob-
jects die young. Their age-oriented collector uses a reference count-
ing collection for the old generation and a tracing collection for the
young generation that establishes reference counts during tracing.
This provides a significant benefit as it avoids performing expen-
sive reference counting operations for the many young objects that
die. Like ulterior reference counting, this collector is a hybrid, so
manifests the complexities of two orthodox collectors.

2.3 Collecting Cyclic Objects
As discussed above, reference counting alone cannot collect all
garbage. Objects can form a cycle, where a group of objects point to
each other, maintaining non-zero reference counts. There exist two
general approaches to deal with cyclic garbage: backup tracing [22]
and trial deletion [2, 9, 18, 19]. Frampton [13] conducted a detailed
study of cycle collection.

Backup Tracing Backup tracing performs a mark-sweep style
trace of the entire heap to eliminate cyclic garbage. The only key
difference to a classical mark sweep is that during the sweep phase,
decrements must be performed from objects found to be garbage for
their descendants into the live part of the heap. To support backup
tracing each object needs to be able to store a mark state during
tracing. Backup tracing can also be used to restore stuck reference
counts as described in Section 2.1.

Trial Deletion Trial deletion collects cycles by identifying groups
of self-sustaining objects using a partial trace of the heap in three
phases. In the first phase, the sub-graph rooted from a selected
candidate object is traversed, with reference counts for all outgoing
pointers (temporarily) decremented. Once this process is complete,
reference counts reflect only external references into the sub-graph.
If any object’s reference count is zero then that object is only
reachable from within the sub-graph. In the second phase, the sub-
graph is traversed again, and outgoing references are incremented
from each object whose reference count did not drop to zero.
Finally, the third phase traverses the sub-graph again, sweeping
all objects that still have a reference count of zero. The original
implementation was due to Christopher [9] and has been optimized
over time [2, 18, 19].

Cycle collection is not the focus of this paper, however some
form of cycle collection is essential for completeness. We use
backup tracing, which performs substantially better than trial dele-
tion and has more predictable performance characteristics [13].
Backup tracing also provides a solution to the problem of reference
counts that become stuck due to limited bits.

3. Analysis of Reference Counting Intrinsics
Recall that despite the implementation advantages of simple imme-
diate reference counting, reference counting is rarely used because
it is comprehensively outperformed by tracing collectors. To help
understand the sources of overhead and identify opportunities for
improvement, we now study the behavior of standard benchmarks
with respect to operations that are intrinsic to reference counting.
In particular, we focus on metrics that are neither user-controllable
nor implementation-specific.

3.1 Methodology
We instrument Jikes RVM to identify, record, and report statistics
for every object allocated. We control the effect of cycle collection
by performing measurements with cycle collection policies at both

extremes (always collect cycles vs. never collect cycles) and report
when this affects the analysis.

Jikes RVM We use Jikes RVM and MMTk for all experiments.
Jikes RVM [1] is a high performance research JVM with a well-
tuned garbage collection infrastructure MMTk [7]. Jikes RVM is
open source written almost entirely in a slightly extended Java.
Jikes RVM does not have a bytecode interpreter. Instead, a fast
template-driven baseline compiler produces machine code when
the VM first encounters each Java method. To ensure performance
and repeatability, all of our experiments were run using Jikes
RVM’s replay compilation feature. We use the most recent version,
which executes one iteration of each benchmark using only the
unoptimized baseline compiler, before using user-provided profile
information to optimize hot methods all at once, prior to the sec-
ond iteration. The second iteration of the benchmark then executes
this optimized version of the code. This approach offers the per-
formance of steady state in an adaptively optimized system, whilst
avoiding the non-determinism of adaptive compilation.

MMTk MMTk is Jikes RVM’s memory management sub-system.
It is a programmable memory management toolkit that implements
a wide variety of collectors that reuse shared components [6]. To
perform our analysis, we instrument the standard configuration of
reference counting to gather information on different metrics while
running the benchmarks. This instrumentation does not affect the
garbage collection workload (the exact same set of objects is col-
lected with or without the instrumentation). The instrumentation
slows the collector down considerably, but since this part of our
analysis is not concerned with collector performance, this slow-
down is irrelevant. We do not use the instrumentation for our sub-
sequent performance study. All of the collectors we evaluate are
parallel, including the standard reference counting we use as our
baseline. The optimizations we present here are correct with re-
spect to parallel collection and the results we present here exploit
parallel collection.

We use mark-sweep as our representative tracing collector and
principal point of comparison because it utilizes the same heap or-
ganization and allocator as the reference counters. We compare our
best reference counting system with the high performance Immix
tracing collector [5], but this is not our main point of comparison
because the principal advantage of the Immix collector is its unique
heap organization which is orthogonal to our optimizations.

Benchmarks We use 19 benchmarks from the DaCapo and
SPEC benchmark suites in all the measurements and performance
studies taken in this paper. SPEC provides both Java client and
server side benchmarks. The DaCapo suite [8] is a suite of non-
trivial real-world open source Java applications. We use the super-
set of all benchmarks from DaCapo 2006 and DaCapo 9.12 that
can run successfully with Jikes RVM, using the more recent version
of any given benchmark when the opportunity exists. We identified
a nominal minimum heap size for each benchmark by finding the
minimum heap size in which the benchmark could successfully
complete using any of the three systems we evaluate (standard
reference counting, our optimized reference counting, and mark-
sweep). Unless otherwise stated we conduct all of our performance
experiments while holding the heap size constant at 2× the mini-
mum heap size, which is a modest size.

Experimental Platform The results we present here were mea-
sured on a modern Core i5 670 dual-core processor with two-way
SMT, a clock rate of 3.4 GHz, 4 MB of last level cache, and 4 GB
of RAM. We conducted our evaluation on a range of modern and
older x86 processors and found that our analysis and optimizations
are robust.

75

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

0	 1	 2	 3	 4	 5	 6	 7	 8-‐15	 16-‐31	 32-‐63	 	 >	 63	

pe
rc
en

ta
ge
	 o
f	 o

bj
ec
ts
	

maximum	 reference	 count	

compress	 jess	

db	 javac	

mpegaudio	 mtrt	

jack	 avrora	

bloat	 chart	

eclipse	 fop	

hsqldb	 luindex	

lusearch	 pjbb2005	

pmd	 sunflow	

xalan	 mean	

Figure 1. Most objects have very low maximum reference counts.
This graph plots the cumulative frequency distribution of maximum
reference counts among objects in each benchmark.

Note that the analysis of intrinsic properties we present in this Sec-
tion does not depend on Jikes RVM or MMTk. The measurements
we make here could have been made on any other JVM to which
we had access to the source.

3.2 Distribution of Maximum Reference Counts
We start by measuring the distribution of maximum reference
counts. For each object our instrumented JVM keeps track of its
maximum reference count, and when the object dies we add the
object’s maximum reference count to a histogram. In Table 1 we
show the cumulative maximum reference count distributions for
each benchmark. For example, the table shows that for the bench-
mark eclipse, 68.2% of objects have a maximum reference count
of just one, and 95.4% of all objects have a maximum reference
count of three. On average, across all benchmarks, 99% of objects
have a maximum reference count of six or less. The data in Table 1
is displayed pictorially in Figure 1.

3.3 Limited Reference Count Bits and Overflow
When the number of bits available for storing the reference count
is restricted, the count may overflow. In Table 2 we show for dif-
ferent sized reference count fields, measurements of: a) the fraction
of objects that would ever overflow, and b) the fraction of refer-
ence counting operations that act on overflowed objects. The first
measure indicates how many objects at some time had their refer-
ence counts overflow. An overflowed reference count will either be
stuck until a backup trace occurs, or will require an auxiliary data
structure if counts are to be unaffected. The second measure shows
how many operations occurred on objects that were already stuck,
and is therefore indicative of how much overhead an auxiliary data
structure may experience.

Results for reference count fields sized from one to five bits are
shown in Table 2. For example, the table shows that when three
bits are used, only 0.65% of objects experience overflow, and for
compress and mpegaudio, none overflow. Although the percentage
of overflowed objects is less than 1%, it is interesting to note that
these overflowed objects attract nearly 23% of all increment and
decrement operations, on average. Overflowed objects thus appear
to be highly popular objects. The data in Table 2 is displayed
pictorially in Figure 2.

3.4 Sources of Reference Counting Operations
Table 3 shows for each benchmark the origin of the increment and
decrement operations. In each case we account for the operations

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	
60	
65	
70	
75	
80	
85	
90	
95	
100	

1	 2	 3	 4	 5	

pe
rc
en

ta
ge
	 o
f	 o

ve
rfl
ow

ed
	 o
bj
ec
ts
	

number	 of	 bits	 used	

compress	 jess	
db	 javac	
mpegaudio	 mtrt	
jack	 avrora	
bloat	 chart	
eclipse	 fop	
hsqldb	 luindex	
lusearch	 pjbb2005	
pmd	 sunflow	
xalan	 mean	

Figure 2. The number of objects which suffer overflowed refer-
ence counts drops off rapidly as the number of available bits grows
from two to five.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

in
c
 f
o
r

n
e
w

 o
b
je

c
ts

2M Collection Threshold 16M Collection Threshold

(a) Increments

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

d
e
c
 f
o
r

n
e
w

 o
b
je

c
ts

2M Collection Threshold 16M Collection Threshold

(b) Decrements

Figure 3. New objects are responsible for the majority of reference
counting operations. We show here the fraction of (a) increments
and (b) decrements that are due to objects allocated within the most
recent 2 MB and 16 MB of objects allocated.

as being due to: a) newly allocated objects (new), b) mutations
to non-new scalar and array objects, and c) temporary operations
due to root reachability when using deferred reference counting.
For decrements, we also include a fifth category that represents
decrements that occur during cycle collection. We performed this
measurement with collections artificially triggered at a range of
intervals from 2MB to 16MB, and report only 2MB and 16MB to
show the significant differences. The definition of ‘new’ is anything
allocated within the last interval, so as the interval becomes larger,
a larger fraction the live objects are ‘new’.

76

m
ax

co
unt

m
ea

n
co

m
pre

ss

jes
s

db jav
ac

m
peg

au
dio

m
trt

jac
k

av
ro

ra

blo
at

ch
ar

t
ec

lip
se

fo
p

hsq
ld

b

lu
in

dex

lu
se

ar
ch

pjb
b20

05

pm
d

su
nflow

xa
lan

0 52.4 66.1 42.7 90.6 33.2 92.7 79.8 55.2 65.3 50.5 52.9 13.6 50.3 3.1 33.7 24.2 61.8 40.4 86.5 52.2
1 85.1 95.0 99.7 99.1 67.8 98.7 97.7 96.5 73.8 83.6 94.3 68.2 82.5 32.4 75.4 89.3 88.9 88.6 97.5 87.3
2 93.2 99.9 99.8 99.2 95.0 99.8 99.1 99.1 84.3 97.5 98.2 90.6 95.3 52.6 79.3 94.4 95.3 94.9 100 97.5
3 97.7 100 99.9 99.3 98.2 100 99.7 99.8 87.9 99.2 100 95.4 98.7 90.9 94.4 98.9 99.5 96.3 100 98.9
4 98.5 100 99.9 99.3 99.1 100 99.8 100 89.7 99.5 100 97.3 99.4 92.0 99.5 100 99.7 97.0 100 99.2
5 99.2 100 99.9 99.3 99.4 100 99.8 100 91.9 99.9 100 98.3 99.6 99.6 99.7 100 99.8 98.2 100 99.3
6 99.3 100 99.9 99.3 99.4 100 99.8 100 93.3 99.9 100 98.9 99.7 99.8 99.8 100 99.9 98.5 100 99.4
7 99.7 100 99.9 99.3 99.5 100 99.9 100 99.9 99.9 100 99.2 99.8 99.9 99.9 100 99.9 98.7 100 99.5

8-15 99.9 100 100 99.4 99.7 100 99.9 100 99.9 100 100 99.8 99.9 100 100 100 100 99.8 100 99.9
16-31 99.9 100 100 99.5 99.9 100 100 100 99.9 100 100 99.9 100 100 100 100 100 99.9 100 99.9
32-63 100 100 100 100 99.9 100 100 100 99.9 100 100 100 100 100 100 100 100 100 100 100
> 63 100

Table 1. Most objects have very low maximum reference counts. Here we show the cumulative frequency distribution of maximum reference
counts among objects in each benchmark. For many benchmarks, 99% of objects have maximum counts of 2 or less.

bits
use

d

m
ea

n
co

m
pre

ss

jes
s

db jav
ac

m
peg

au
dio

m
trt

jac
k

av
ro

ra

blo
at

ch
ar

t
ec

lip
se

fo
p

hsq
ld

b

lu
in

dex

lu
se

ar
ch

pjb
b20

05

pm
d

su
nflow

xa
lan

percentage of overflowed objects
1 47.65 33.93 57.31 9.37 66.77 7.29 20.23 44.76 34.74 49.54 47.08 86.36 49.68 96.89 66.31 75.83 38.23 59.62 13.54 47.83
2 6.75 0.08 0.16 0.80 4.96 0.16 0.95 0.95 15.74 2.54 1.83 9.38 4.73 47.38 20.75 5.57 4.67 5.15 0.01 2.47
3 0.65 0 0.08 0.68 0.59 0 0.16 0.01 6.69 0.10 0.02 1.15 0.31 0.21 0.16 0.01 0.14 1.53 0.01 0.59
4 0.11 0 0.06 0.68 0.28 0 0.08 0 0.06 0.05 0.01 0.24 0.10 0.01 0.01 0.01 0.02 0.26 0.01 0.17
5 0.06 0 0.03 0.49 0.12 0 0.03 0 0.06 0.03 0.01 0.07 0.05 0.01 0.01 0.01 0.01 0.14 0.01 0.06

percentage of increments on overflowed objects
1 100
2 41.2 8.2 77.5 96.9 19.9 2.5 35.2 3.6 28.6 71.7 17.2 25.5 20.0 39.7 63.8 16.3 68.4 61.8 84.7 41.9
3 22.7 0 76.8 83.6 12.2 0 29.9 0 17.1 51.3 14.1 10.9 8.9 5.0 0.9 8.0 35.3 14.5 35.0 27.3
4 17.8 0 75.6 55.1 9.7 0 25.8 0 14.8 36.2 13.1 7.0 7.0 4.9 0 7.4 18.9 10.1 34.3 18.2
5 13.4 0 73.6 16.7 7.5 0 22.2 0 11.1 20.5 11.2 5.0 5.5 4.8 0 6.5 14.2 8.6 33.0 14.5

percentage of decrements on overflowed objects
1 100
2 43.0 10.4 77.5 96.9 21.3 2.4 40.0 3.5 28.4 71.9 17.8 32.4 20.1 48.1 64.4 17.4 69.8 65.6 84.7 44.0
3 23.3 0 76.7 83.6 13.0 0 34.8 0 17.0 51.4 14.6 13.7 7.3 6.1 0.9 8.5 36.1 15.3 35.0 28.7
4 18.3 0 75.5 55.1 10.3 0 30.3 0 14.6 36.3 13.5 9.0 5.3 5.9 0 7.9 19.3 10.8 34.3 19.2
5 13.8 0 73.6 16.7 8.1 0 26.3 0 11.0 20.5 11.6 6.6 4.0 5.8 0 6.9 14.4 9.1 33.0 15.3

Table 2. Reference count overflow is infrequent when a modest number of bits are used. The top third of this table shows the number of
objects which ever suffer overflow when 1, 2, 3, 4, or 5 bits are used for reference counts. The middle third shows how many increments are
applied to overflowed objects. The bottom third shows how many decrements are applied to overflowed objects.

ty
pes

co
lle

ct
io

n
tri

gger

m
ea

n
co

m
pre

ss

jes
s

db jav
ac

m
peg

au
dio

m
trt

jac
k

av
ro

ra

blo
at

ch
ar

t
ec

lip
se

fo
p

hsq
ld

b

lu
in

dex

lu
se

ar
ch

pjb
b20

05

pm
d

su
nflow

xa
lan

breakdown of increments
new 2M 57 1.1 94.1 98.5 78.5 99.8 76.5 85.2 25.4 91.5 44.9 57.6 50.4 65.4 20.6 18.5 68.7 51.5 10.7 37.6

16M 71 5.3 99.1 90.3 87.8 99.8 93.5 96.8 37.6 98.8 82.4 91.0 85.9 76.2 23.1 43.4 81.4 82.0 15.1 68.7
scalar 2M 16 0.8 0.1 0 9.0 0 2.7 2.6 69.3 0.1 5.9 0.5 6.5 14.2 64.8 20.7 12.2 18.2 57.3 11.3

16M 18 0.8 0 0 8.0 0 3.0 1.1 61.5 0 6.2 0.5 4.4 14.0 69.7 40 14.1 12.6 79.3 18.3
array 2M 1 0 0 0.6 2.6 0 0 0.4 0 0.1 0 1.0 0 6.7 5.1 0.2 0.4 0.3 0 4.1

16M 2 0.1 0 9.6 2.4 0 0 0.4 0 0 0.2 0.4 0 6.8 5.1 0.3 1.6 0.2 0 2.8
root 2M 27 98.1 5.8 0.9 9.9 0.2 20.7 11.7 5.3 8.3 49.1 41.0 43.0 13.7 9.5 60.6 18.7 29.9 32.0 47.0

16M 9 93.8 0.8 0.1 1.8 0.2 3.5 1.7 0.9 1.1 11.2 8.2 9.7 3.0 2.2 16.3 3.0 5.2 5.6 10.1
breakdown of decrements

new 2M 60 2.4 95.0 97.7 63.5 99.8 90.8 90.4 30.7 92.1 65.3 39.7 60.1 42.9 22.2 24.0 70.5 56.4 45.5 43.2
16M 71 11.3 98.9 90.3 70.5 99.8 96.7 97.0 42.2 98.6 88.7 61.5 84.4 51.7 24.8 48.8 80 81.6 54.9 71.5

scalar 2M 15 0.8 0.4 0.1 16.1 0 1.0 2.1 64.4 0.3 4.6 3.6 4.0 25.8 63.5 19.7 13.2 15.1 34.4 10.7
16M 15 0.9 0.4 0 14.9 0 0.9 0.8 57.0 0.1 4.0 4.1 1.8 25.3 67.9 33.7 14.5 9.8 41.4 14.9

array 2M 1 0 0 0.5 2.5 0 0 0.3 0 0.2 0 0.9 0 6.2 5.1 0.8 0.3 0.3 0 3.7
16M 2 0 0 9.4 2.4 0 0 0.4 0 0.1 0 0.3 0 6.2 5.2 1.3 1.1 0.2 0 2.2

root 2M 21 96.7 4.5 1.7 7.7 0.2 6.9 7.2 4.8 7.2 28.3 37.7 29.7 12.5 9.1 53.8 14.0 25.1 20.1 40
16M 8 87.3 0.6 0.3 1.3 0.2 1.1 1.7 0.8 1.0 4.9 7.2 5.7 2.7 2.1 12.8 2.1 4.5 3.7 7.8

cycle 2M 3 0.1 0.1 0 10.3 0 1.3 0 0 0.1 1.8 18.1 6.2 12.7 0.1 1.8 2.0 3.1 0 2.3
16M 4 0.6 0.1 0 10.9 0 1.4 0 0 0.2 2.4 26.9 8.1 14.1 0.1 3.3 2.3 4.0 0 3.6

Table 3. New objects account for a large fraction of increment and decrement operations. This table shows the sources of increment (top)
and decrement (bottom) operations when collections are forced at 2 MB and 16 MB intervals. In all cases new objects dominate.

77

m
ax

co
unt

m
ea

n
co

m
pre

ss

jes
s

db jav
ac

m
peg

au
dio

m
trt

jac
k

av
ro

ra

blo
at

ch
ar

t
ec

lip
se

fo
p

hsq
ld

b

lu
in

dex

lu
se

ar
ch

pjb
b20

05

pm
d

su
nflow

xa
lan

0 0
1 31 72.1 17.3 0.8 23.4 67.5 50.2 77.5 2.7 6.2 63.4 32.8 38.2 8.8 5.9 54.1 13.6 18.3 10.5 28.2
2 18 27.3 5.0 0.1 47.7 27.2 7.6 12.5 53.7 5.6 13.2 29.2 31.2 20.9 3.1 19.2 7.4 7.9 4.8 24.6
3 9 0.6 0.1 0.1 9.5 5.3 7.1 7.9 5.4 1.4 8.6 9.5 12.3 37.7 16.5 16.5 10.5 3.2 0 10.6
4 5 0 0 0 3.2 0 1.2 1.5 4.0 0.4 0.3 5.6 5.5 1.4 52.9 4.5 7.5 7.7 0 1.2
5 4 0 0 0 1.0 0 0.3 0.3 5.6 0.6 0.1 3.6 1.6 25.3 4.2 0 6.8 26.7 0 0.5
6 1 0 0 0 0.4 0 0.2 0.2 3.7 0.1 0 2.6 0.8 0.5 3.6 0 8.2 4.8 0 0.6
7 2 0 0 0 0.5 0 0.3 0.1 16.8 0.1 0 1.8 0.8 0.2 4.0 0 1.7 7.3 0 0.4

8-15 3 0 0.1 0.1 1.9 0 3.0 0.1 0 0.4 0 5.6 2.0 0.3 9.8 0 3.9 11.6 0 13.1
16-31 2 0 0.2 4.6 2.2 0 4.5 0 0 6.0 0.4 3.0 1.7 0 0 0 21.3 1.3 0 1.8
32-63 7 0 0.2 89.9 1.6 0 2.2 0 0.1 27.8 1.5 1.8 1.5 0 0 0.2 3.1 2.2 0 4.5
> 63 17 0 77.0 4.4 8.4 0 23.5 0 8.1 51.4 12.4 4.5 4.6 4.9 0.1 5.5 16.1 8.9 84.7 14.5

Table 4. 49% of increment and decrement operations occur on objects with maximum reference counts of just one or two. This table shows
how increment operations are distributed as a function of the maximum reference count of the object the increment is applied to.

 0

 10

 20

 30

 40

 50

 60

 70

 80

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

s
u
rv

iv
a
l
ra

ti
o

2M Collection Threshold 16M Collection Threshold

Figure 4. Most benchmarks have very low object survival ratios.
This graph shows the percentage of objects that survive beyond
2 MB and 16 MB of allocation.

On average 71% of increments and 71% of decrements are per-
formed upon newly allocated objects (over 90% for some bench-
marks). For most benchmarks increments and decrements to non-
new objects are low (around 9-10%), consistent with previous find-
ings [4]. Around 10% of operations are due to root reachability. 4%
of decrements are performed during cycle collection.

Figures 3(a) and 3(b) illustrate data from Table 3 graphically,
showing the fraction of increments and decrements due to new
objects, where new is defined in terms of both 2 MB and 16 MB
allocation windows.

Conventionally, when using deferred reference counting, new
objects are born ‘live’, with a temporary increment of one. A corre-
sponding decrement is enqueued and applied at the next collection.
Thus a highly allocating benchmark will incur a large number of
increments and decrements simply due to the allocation of objects.
Furthermore, newly allocated objects are relatively more frequently
mutated, so contribute further to the total count of reference count-
ing operations.

Table 4 shows the fraction of increments as a function of maxi-
mum reference count. For example, the table shows that on average
31% of increments are performed for objects having maximum ref-
erence count of one and 18% increments are performed for objects
having maximum reference count of two. Interestingly, on average
17% of increments are due to objects with very high maximum ref-
erence counts (>63).

Figure 4 shows that most benchmarks have survival ratio of un-
der 10%, indicating that over 90% of objects are unreachable by the
time of the first garbage collection. This information and the data
which shows that new objects attract a disproportionate fraction of
increments and decrements confirms previous suggestions that new

objects are likely to be a particularly fruitful focus for optimization
of reference counting [4, 21].

3.5 Efficacy of Coalescing
Coalescing is most effective when individual reference fields are
mutated many times, allowing the reference counter to avoid per-
forming a significant number of reference count operations. To de-
termine whether this expectation matches actual behavior, we com-
pare the total number of reference mutation operations to the num-
ber of reference mutations observable by coalescing (i.e., where
the final value of a reference field does not match the initial value).
We control the window over which coalescing occurs by triggering
collection after set volumes of application allocation (from 2 MB
to 8 MB).

Table 5 shows, for example, that with a window of 8 MB, coa-
lescing observes 50.5% and 92.2% of reference mutations for com-
press and jess respectively. For a few benchmarks, such as avrora,
luindex, and sunflow, coalescing is extremely effective, eliding 90%
or more of all reference mutations. However, for many benchmarks,
coalescing is not particularly effective, eliding less than half of all
mutations. In addition to measuring this for all objects, we sepa-
rately measure operations over new objects — those allocated since
the start of the current time window. This data shows that coalesc-
ing is significantly more effective with old objects. This is con-
sistent with the idea that frequently mutated objects tend to be long
lived, and is not inconsistent with the prior observation [4] that most
mutations occur to young objects (since over the life of a program,
young objects typically outnumber old objects by around 10:1).

Table 6 provides a different perspective by showing the break-
down of total reference mutations per unit time (millisecond).

3.6 Cyclic Garbage
Table 7 shows key statistics for each benchmark related to cyclic
garbage. For each benchmark we show: 1) the fraction of objects
that can be reclaimed by pure reference counting, and 2) the frac-
tion of objects that are part of a cyclic graph when unreachable, so
can only be reclaimed via cycle collection, and 3) the fraction of
objects that are statically known to be acyclic (i.e., an object of that
type can never transitively refer to itself). Note that 2) may not be
directly participating in a cycle but may be referenced by a cycle.
These results show that the importance of cycle collection varies
significantly between benchmarks, with some benchmarks relying
heavily on cycle collection (javac, mpegaudio, eclipse, hsqldb and
pmd) while the cycle collector is responsible for reclaiming almost
no memory (less than 1% for jess, db, jack, avrora, bloat and sun-
flow).

78

co
lle

ct
io

n
tri

gger

m
ea

n
co

m
pre

ss

jes
s

db jav
ac

m
peg

au
dio

m
trt

jac
k

av
ro

ra

blo
at

ch
ar

t
ec

lip
se

fo
p

hsq
ld

b

lu
in

dex

lu
se

ar
ch

pjb
b20

05

pm
d

su
nflow

xa
lan

percentage of pointer field changes seen (overall)
2M 36.4 48.0 92.2 26.9 54.7 0.1 47.9 53.3 10.0 12.1 71.9 54.8 60.6 43.8 3.9 27.7 23.9 32.3 8.9 19.2
4M 36.2 49.6 92.2 26.4 54.5 0.1 47.9 53.3 10.0 12.1 71.9 55.9 60.6 43.8 3.9 22.2 22.1 32.3 8.9 19.2
8M 36.2 50.5 92.2 26.1 54.1 0.1 47.9 53.3 10.0 11.8 71.9 55.9 60.6 43.8 3.8 22.1 23.4 32.3 8.9 19.1

percentage of pointer field changes seen (for new objects)
2M 48.5 53.3 92.4 28.6 61.1 0.1 48.8 56.4 31.3 12.0 79.1 58.3 67.4 67.7 25.5 74.8 45.9 41.3 48.3 28.6
4M 46.5 53.3 92.4 28.5 59.7 0.1 48.8 56.0 30.8 12.1 78.1 57.4 66.5 66.9 13.5 58.4 45.6 40.2 48.0 27.4
8M 45.8 53.2 92.4 28.2 59.1 0.1 48.8 55.2 30.8 11.7 76.4 57.0 66.4 65.5 9.4 56.2 45.2 40.0 48.3 26.7

percentage of pointer field changes seen (for old objects)
2M 10.3 12.8 45.3 13.7 29.0 20.0 4.0 1.2 0.1 21.0 18.1 9.6 10.5 2.7 1.0 0.2 2.7 1.8 0.8 0.3
4M 9.9 14.1 38.2 8.0 30.4 20.0 3.5 1.0 0.0 22.1 18.6 13.5 11.4 1.3 1.2 0.1 1.8 1.6 0.7 0.2
8M 9.7 14.5 32.7 4.9 29.2 21.1 2.6 1.1 0.0 28.6 19.0 12.9 11.5 0.7 0.9 0.1 1.4 1.5 0.7 0.1

Table 5. Coalescing elides around 64% of pointer field changes on average, and around 90% for old objects. This table shows the fraction
of mutations that are seen by coalescing given three different collection windows. The top third shows the overall average. The middle third
shows results for new objects. The bottom third shows old objects.

ty
pes

m
ea

n
co

m
pre

ss

jes
s

db jav
ac

m
peg

au
dio

m
trt

jac
k

av
ro

ra

blo
at

ch
ar

t
ec

lip
se

fo
p

hsq
ld

b

lu
in

dex

lu
se

ar
ch

pjb
b20

05

pm
d

su
nflow

xa
lan

Scalar 8027 2 3165 896 7689 3185 2319 9046 3305 36862 3234 2432 1872 11162 10051 10059 13080 11558 13894 8695
Array 1788 0 3026 7806 1010 1 3069 2099 15 551 106 3242 72 3080 937 280 2723 1320 62 4566
Bulk 114 0 2023 0 6 0 0 6 0 4 3 91 2 7 0 0 0 11 0 7
Total 9928 2 8214 8702 8705 3186 5389 11151 3320 37417 3343 5765 1945 14249 10989 10339 15804 12890 13955 13268

Table 6. References are mutated around 10 million times per second on average, on our 3.4 GHz Core i5. This graph shows the rate of
mutations per millisecond for each benchmark, broken down by scalars, arrays and bulk copy operations.

ty
pes

m
ea

n
co

m
pre

ss

jes
s

db jav
ac

m
peg

au
dio

m
trt

jac
k

av
ro

ra

blo
at

ch
ar

t
ec

lip
se

fo
p

hsq
ld

b

lu
in

dex

lu
se

ar
ch

pjb
b20

05

pm
d

su
nflow

xa
lan

pure rc objects 84 91 99.7 100 77 64 93 99.9 99.8 99 94 47 82 27 91 84 87 80 99.99 90
cyclic objects 16 9 0.3 0 23 36 7 0.1 0.2 1 6 53 18 73 9 16 13 20 0.01 10

acyclic objects 38 55 18 4 34 44 3 38 16 49 49 54 46 35 49 28 35 21 97 44

Table 7. The importance of cycle collection. This table shows that on average 84% of objects can be collected by reference counting without
a cycle collector, and that on average 38% of all objects are inherently acyclic. These results vary considerably among the benchmarks.

4. Improving Reference Counting
We now explore two areas for optimization that arise from our
analysis of the intrinsic data presented in the previous section. We
describe the insights, evaluate the designs, and evaluate the ideas in
combination.

4.1 Storing the Reference Count
Because the vast majority of objects have low maximum refer-
ence counts, the use of just a few bits for the reference count-
ing is appealing. The idea has been proposed before [15], but to
our knowledge has not been systematically analyzed. Key insights
that can be drawn from our intrinsic analysis are that most objects
have maximum reference counts of seven or less, and that objects
with high maximum reference counts account for a disproportion-
ate fraction of reference counting operations. The former motivates
using around three bits for storing the count, while the latter sug-
gests that any strategy for dealing with overflow must not be too
expensive since it is likely to be heavily invoked. We now describe
three strategies for dealing with reference count overflow.

Hash table on overflow (HashTable RC) When an object’s ref-
erence count overflows, the reference count can be stored in a hash
table. Increments and decrement are performed in the hash table un-
til the reference count drops below the overflow threshold, at which
point the hash table entry is released. Each entry in the hash table
requires two words, one word for the object (key) and one word
for the count (value). We measure the size of hash table across the
benchmarks and find that 1 MB table is sufficient for all bench-
marks.

Stuck and Ignored on Overflow (StuckIgnore RC) When an ob-
ject’s count overflows, it may be left stuck at the overflow value
and all future increments and decrements will be ignored. Refer-
ence counting is thus unable to collect these objects, so they must
be recovered by the backup tracing cycle collector (note that a trial
deletion cycle collector cannot collect such objects).

Stuck and Restored on Overflow (StuckRestore RC) A refine-
ment to the previous case has the backup trace restore reference
counts within the heap during tracing, by incrementing the target
object’s count for each reference traversed. Although this approach
imposes an additional role upon the backup trace, it has the benefit
of freeing the backup trace from performing decrement operations
for collected objects.

In Figure 5 we evaluate these strategies. In Jikes RVM we have
up to one byte (8 bits) available in the object header for use by
the garbage collector. We use two bits to support the dirty state
for coalescing, one bit for the mark-state for backup tracing, and
the remaining five bits to store the reference count. All results are
normalized to MMTk’s default reference counting configuration,
Standard RC, a coalescing deferred collector using an additional
header word and that uses backup tracing cycle collector.

For the majority of the benchmarks HashTable RC performs
poorly, with Standard RC 1% better in total time (Figure 5(a))
and 13% better in collection time (Figure 5(b)) than HashTable
RC on average. The performance of jess and db is much worse
in HashTable RC compared to other benchmarks. This was pre-
dicted by our analysis, which showed that these benchmarks had

79

 0.85
 0.9

 0.95
 1

 1.05
 1.1

 1.15
 1.2

 1.25
 1.3

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

T
im

e
,
n
o
rm

a
liz

e
d
 t
o
 R

C

StuckRestore RC

StuckIgnore RC

HashTable RC

(a) Total Time

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

je
ss

d
b

ja
va

c
m

trt
ja

ck
a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

G
C

 t
im

e
,
n
o
rm

a
liz

e
d
 t
o
 R

C

StuckRestore RC

StuckIgnore RC

HashTable RC

(b) GC Time

Figure 5. Using a hash table to account for reference count over-
flow is not a good solution. These graphs show three strategies for
dealing with overflow. Results vary greatly among benchmarks.

high rates of reference counting operations on overflowed objects.
While HashTable RC benefits from not requiring an additional
header word, this benefit is outweighed by the cost of performing
increment and decrement operations in the hash table. In HashTable
RC, the processing of increments and decrements are 30% and 17%
slower than in Standard RC, respectively.

Given the poor performance of the hash table approach, we turn
our attention to the systems that use backup tracing to collect ob-
jects with sticky reference counts, StuckIgnore RC and StuckRe-
store RC. Both StuckIgnore RC and StuckRestore RC outperform
Standard RC (by 4% and 5% respectively). This is primarily due
to no longer requiring an additional header word, although there
is also some advantage from ignoring reference counting opera-
tions. Comparing the two sticky reference count systems, StuckRe-
store RC performs slightly better in both total time and collection
time. Backup tracing in StuckRestore RC performs more work than
StuckIgnore RC because it restores the count for the objects. But as
mentioned earlier, during backup tracing if any object’s reference
count is zero then only the object is reclaimed and count of the de-
scendants are not decremented, giving StuckRestore RC a potential
advantage.

We also measured (but do not show here) the three overflow
strategies with an additional header word, to factor out the source of
difference with Standard RC. In this scenario, the extra word is not
used to store the reference count but simply acts as a placeholder
to evaluate the impact of the space overhead. In that case, StuckIg-
nore RC performs same as Standard RC and StuckRestore RC only
marginally outperformed Standard RC (by 1% in total time), indi-
cating that most of their advantage comes from the use of a small
reference counting field.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

N
o
rm

a
liz

e
d
 t
o
ta

l
in

c
re

m
e
n
ts

(a) Increments

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

N
o
rm

a
liz

e
d
 t
o
ta

l
d
e
c
re

m
e
n
ts

(b) Decrements

Figure 6. Lazy treatment of new objects greatly reduces the num-
ber of reference counting operations necessary compared to Stan-
dard RC. The effectiveness varies greatly among the benchmarks.

4.2 Lazy Treatment of New Objects
Our analysis shows that reference counting overheads are domi-
nated by the behavior of new objects, and yet the vast majority
of those objects do not survive a single collection. Two previous
systems proposed hybrid collectors that successfully exploited this
property. Blackburn and McKinley [4] combined copying genera-
tional collection and reference counting, using the copying collec-
tor to absorb the impact of the young objects. Paz et al. developed
a similar scheme that combined mark-sweep collection with refer-
ence counting [21]. Like the previous work, we propose to avoid
reference counting operations on new objects. However, our goal
is to do so within the framework of reference counting, without
creating a hybrid by introducing another collector.

We leverage two insights that allow us to ignore new objects un-
til their first collection, at which point they can be processed lazily
as they are discovered. First, coalescing reference counting uses
a dirty bit in each object’s header to ignore mutations to objects
between their initial mutation and the bit being reset at collection
time. A collector that ignores new objects could straightforwardly
use this mechanism. Second, in a deferred reference counter any
new object reachable from either the roots or old objects will be in-
cluded in the set of increments. Furthermore, the set of increments
will only include references to new objects that are live.

We further observe that if new objects are allocated dead, and
only made live upon discovery, then a significant fraction of expen-
sive freeing operations can be avoided, since the vast majority of
objects do not survive the first collection.

We start by considering the treatment of new objects in a collec-
tor that uses deferred reference counting and coalescing, and we use
this as our point of comparison. In such a collector, new objects are
allocated dirty with a reference count of one. The object is added

80

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

T
im

e
,
n
o
rm

a
liz

e
d
 t
o
 R

C

Lazy Mod-Buf Lazy Mod-Buf (Alloc-Dead)

(a) Total time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

je
ss

d
b

ja
va

c
m

trt
ja

ck
a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

G
C

 t
im

e
,
n
o
rm

a
liz

e
d
 t
o
 R

C

Lazy Mod-Buf Lazy Mod-Buf (Alloc-Dead)

(b) GC time

Figure 7. Lazy treatment of new objects reduces total time by
around 20% compared to Standard RC. Most of this benefit comes
from not eagerly adding new objects to the mod-buf.

to the deque of decrements (dec-buf), and a decrement cancelling
the reference count of one is applied once the dec-buf is processed
at the next collection [12]. The object is also added to the deque of
modified objects (mod-buf) used by the coalescing mechanism. At
the next collection, the collector processes the mod-buf and applies
an increment for each object that the processed object points to.
Because all references are initially null, the coalescing mechanism
does not need to explicitly generate decrements corresponding to
outgoing pointers from the initial state of the object [16].

Lazy Mod-Buf Insertion Our first optimization is to not add new
objects to the mod-buf. Instead, we add a ‘new’ bit to the object
header, and add objects lazily to the mod-buf at collection time,
only if they are encountered during the processing of increments.
Whenever the subject of an increment is marked as new, the ob-
ject’s new bit is cleared, and the object is pushed onto the mod-buf.
Because in a coalescing deferred reference counter, all references
from roots and old objects will increment all objects they reach, our
approach will retain all new objects directly reachable from old ob-
jects and the roots. Because each object processed on the mod-buf
will increment each of its children, our scheme is transitive. Thus
new objects are effectively traced. However, rather than combing
reference counting and tracing to create a hybrid collector [4, 21],
our scheme achieves a similar result via a very simple optimization
to existing reference counting collector. This optimization required
only very modest changes to MMTk’s existing reference count-
ing collector.1 Figure 6(a) shows the massive reduction in the total
number of increments.

Allocate As Dead As a simple extension of the above optimiza-
tion, instead of allocating objects live, with a reference count of one
and a compensating decrement enqueued to the dec-buf, our second

1 We have contributed our code to Jikes RVM.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

T
im

e
,
n
o
rm

a
liz

e
d
 t
o
 R

C

Lazy Mod-Buf (Alloc-Dead) with StuckRestore

(a) Total time

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

je
ss

d
b

ja
va

c
m

trt
ja

ck
a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

G
C

 t
im

e
,
n
o
rm

a
liz

e
d
 t
o
 R

C
Lazy Mod-Buf (Alloc-Dead) with StuckRestore

(b) GC time

Figure 8. The combined effect of our optimizations is a 24%
improvement in total time compared to Standard RC. Both jess
and lusearch see nearly two-fold improvements.

optimization allocates new objects as dead and does not enqueue a
decrement. This inverts the presumption: the reference counter does
not need to identify those new objects that are dead, but it must
rather identify those that are reachable. This inversion means that
work is done in the infrequent case of a new object being reachable,
rather that the common case of it being dead. New objects are only
made live when they receive their first increment while processing
the mod-buf during collection time. Our optimization removes the
need for creating compensating decrements and avoids explicitly
freeing short lived objects. Figure 6(b) shows that decrements are
reduced by over 80%.

We evaluate performance of both optimizations for lazy treatment
of new objects. Figures 7(a) and 7(b) show the effect of the op-
timizations on total time and garbage collection time respectively
relative to orthodox deferred reference counting with coalescing
(Standard RC). The first optimization (Lazy Mod-Buf) improves
over Standard RC by 16% in total time and 58% in collection time,
on average, over the set of benchmarks. The two optimizations
combined (Lazy Mod-Buf (Alloc-Dead)) are 19% faster in total time
and 66% faster in collection time than Standard RC on average.

4.3 Bringing It All Together
Figure 8 presents an evaluation of the impact of the three most ef-
fective optimizations operating together: a) limited bits for the ref-
erence count and restore counts during backup trace, b) lazy mod-
buf insertion, and c) allocate as dead. The combined effect of these
optimizations is 24% faster in total time (Figure 8(a)) and 74%
faster in collection time (Figure 8(b)) compared to our base case
(Standard RC), on average over the benchmarks. This substantial
improvement over an already optimized reference counting imple-
mentation should change perceptions about reference counting and
its applicability to high performance contexts.

81

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

T
im

e
,
n
o
rm

a
liz

e
d
 t
o
 M

S

Standard RC

Lazy Mod-Buf (Alloc-Dead) with StuckRestore

(a) Total time

 0

 1

 2
 3

 4

 5

 6
 7

 8

je
ss

d
b

ja
va

c
m

trt
ja

ck
a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

G
C

 t
im

e
,
n
o
rm

a
liz

e
d
 t
o
 M

S

Standard RC

Lazy Mod-Buf (Alloc-Dead) with StuckRestore

(b) GC time

Figure 9. Our optimized reference counting very closely matches
mark-sweep, while standard reference counting performs 30%
worse.

5. Back In The Ring
The conventional wisdom is that reference counting is totally un-
competitive compared to a modern mark-sweep collector [4]. Fig-
ure 9 shows the evaluation of Standard RC and Lazy Mod-Buf
(Alloc-Dead) against a well tuned mark-sweep collector. Consis-
tent with conventional wisdom, Standard RC performs substan-
tially worse than mark-sweep, slowing down by 30%. However, our
optimized reference counter, Lazy Mod-Buf (Alloc-Dead), is able to
entirely eliminate the overhead and perform marginally faster than
mark-sweep on average, and is at worst 22% worse than mark-
sweep (javac whose performance largely depends on the trigger-
ing of cycle collection) and at best 21% better than mark-sweep
(hsqldb).

We compared our improved reference counting with ulterior
reference counting [4] and Immix [5]. Ulterior reference count-
ing combines copying generational collection for the young objects
and reference counting for the old objects. Immix is a mark-region
based tracing garbage collector with opportunistic defragmenta-
tion, which mixes copying and marking in a single pass. It achieves
space efficiency, fast reclamation, and mutator performance. Much
of its performance advantage over mark-sweep is due to its heap or-
ganization. Figure 10 shows that our improved reference counting
is 2% slower than ulterior reference counting and 3% slower than
Immix.

We also compare our improved reference counting with sticky
mark bits collectors [5, 11]. These collectors are similar to ours
in that they combine generational ideas in a non-moving context.
However, they use tracing and they use a write barrier to avoid
tracing the whole heap at every collection. Like our approach, they
identify new objects using bits in the object header to treat them
separately. Figure 11 shows that our improved reference counting
collector performs the same as Sticky MS and 10% slower than

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

T
im

e
,
n
o
rm

a
liz

e
d
 t
o
 n

e
w

 R
C

URC Immix

(a) Total time

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

je
ss

d
b

ja
va

c
m

trt
ja

ck
a
vro

ra
b
lo

a
t

ch
a
rt

e
clip

se
fo

p
h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

G
C

 t
im

e
,
n
o
rm

a
liz

e
d
 t
o
 n

e
w

 R
C

URC Immix

(b) GC time

Figure 10. Our optimized reference counting collector also per-
forms very well compared to ulterior reference counting and Im-
mix. Our collector lags URC by 2% and Immix by 3% on average.

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

co
m

p
re

ss
je

ss
d
b

ja
va

c
m

p
e
g
a
u
d
io

m
trt

ja
ck

a
vro

ra
b
lo

a
t

ch
a
rt

fo
p

h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

T
im

e
,
n
o
rm

a
liz

e
d
 t
o
 n

e
w

 R
C

Sticky MS Sticky Immix

(a) Total time

 0

 1

 2

 3

 4

 5

 6

je
ss

d
b

ja
va

c
m

trt
ja

ck
a
vro

ra
b
lo

a
t

ch
a
rt

fo
p

h
sq

ld
b

lu
in

d
e
x

lu
se

a
rch

p
m

d
su

n
flo

w
xa

la
n

p
jb

b
2
0
0
5

m
in

m
a
x

m
e
a
n

g
e
o
m

e
a
n

G
C

 t
im

e
,
n
o
rm

a
liz

e
d
 t
o
 n

e
w

 R
C

Sticky MS Sticky Immix

(b) GC time

Figure 11. Sticky Immix outperforms our optimized reference
counting collector by 10%. The combination of the optimized ref-
erence counter and the Immix heap layout appears to be promising.

82

Sticky Immix. Sticky Immix should therefore be a good indicator of
the performance of our improved reference counting projected onto
the Immix heap organization. This is an exciting prospect because
Sticky Immix is only 3% slower than Jikes RVM’s production
collector.

6. Conclusion
Of the two fundamental algorithms on which the garbage collection
literature is built, reference counting has lived in the shadow of
tracing. It has a niche among language developers for whom either
performance or completeness is not essential, and is unused by
mature high performance systems, despite a number of intrinsic
advantages such as promptness of recovery and dependence on
local rather than global state. The basis for its poor standing is
that high performance reference counting significantly lags high
performance tracing algorithms in performance.

We have conducted a comprehensive analysis of reference
counting, confirmed that its performance lags mark-sweep by
over 30%, and measured a number of reference counting intrin-
sics which give insight into its behavior and opportunities for im-
provement. We have identified two significant optimizations which
together entirely eliminate the performance gap with mark-sweep.
Unlike prior work, our optimizations are not hybrids, but modest
changes to orthodox reference counting that significantly improve
its performance.

Our hope is that our optimizations and our analysis of reference
counting behavior will give new life to reference counting garbage
collection.

References
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-

D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel,
D. Lieber, V. Litvinov, M. Mergen, T. Ngo, J. R. Russell, V. Sarkar,
M. J. Serrano, J. Shepherd, S. Smith, V. C. Sreedhar, H. Srinivasan,
and J. Whaley. The Jalapeño virtual machine. IBM Systems Journal,
39(1):211–238, February 2000. doi: 10.1147/sj.391.0211.

[2] D. F. Bacon and V. T. Rajan. Concurrent cycle collection in refer-
ence counted systems. In European Conference on Object-Oriented
Programming, pages 207–235, Budapest, Hungary, 2001. doi: 10.
1007/3-540-45337-7_12.

[3] D. F. Bacon, C. R. Attanasio, H. B. Lee, V. T. Rajan, and S. Smith.
Java without the coffee breaks: A nonintrusive multiprocessor garbage
collector. In ACM Conference on Programming Language Design and
Implementation, pages 92–103, Snowbird, UT, USA, 2001. doi: 10.
1145/378795.378819.

[4] S. M. Blackburn and K. S. McKinley. Ulterior reference counting:
Fast garbage collection without a long wait. In ACM Conference
on Object–Oriented Programming Systems, Languages, and Applica-
tions, pages 344–358, Anaheim, CA, USA, 2003. doi: 10.1145/
949305.949336.

[5] S. M. Blackburn and K. S. McKinley. Immix: A mark-region garbage
collector with space efficiency, fast collection, and mutator locality.
In ACM Conference on Programming Language Design and Imple-
mentation, pages 22–32, Tucson, AZ, USA, 2008. doi: 10.1145/
1379022.1375586.

[6] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and water? High
performance garbage collection in Java with MMTk. In Proceedings
of the 26th International Conference on Software Engineering, pages
137–146, Edinburgh, Scotland, UK, 2004. doi: 10.1109/ICSE.
2004.1317436.

[7] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and realities:
The performance impact of garbage collection. In Proceedings of the

ACM Conference on Measurement & Modeling Computer Systems,
pages 25–36, New York, NY, USA, 2004. doi: 10.1145/1005686.
1005693.

[8] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKin-
ley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer,
M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar,
D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann.
The DaCapo benchmarks: Java benchmarking development and anal-
ysis. In ACM Conference on Object–Oriented Programming Systems,
Languages, and Applications, pages 169–190, Portland, OR, USA,
2006. doi: 10.1145/1167473.1167488.

[9] T. W. Christopher. Reference count garbage collection. Software:
Practice and Experience, 14(6):503–507, June 1984. doi: 10.1002/
spe.4380140602.

[10] G. E. Collins. A method for overlapping and erasure of lists. Com-
munications of the ACM, 3(12):655–657, December 1960. doi: 10.
1145/367487.367501.

[11] A. Demers, M. Weiser, B. Hayes, H. Boehm, D. Bobrow, and
S. Shenker. Combining generational and conservative garbage col-
lection: Framework and implementations. In Proceedings of the
Seventeenth Annual ACM Symposium on the Principles of Program-
ming Languages, pages 261–269, San Francisco, CA, USA, 1990.
doi: 10.1145/96709.96735.

[12] L. P. Deutsch and D. G. Bobrow. An efficient, incremental, auto-
matic garbage collector. Communications of the ACM, 19(9):522–526,
September 1976. doi: 10.1145/360336.360345.

[13] D. Frampton. Garbage Collection and the Case for High-level Low-
level Programming. PhD thesis, Australian National University, June
2010. URL http://cs.anu.edu.au/˜Daniel.Frampton/
DanielFrampton_Thesis_Jun2010.pdf.

[14] I. Jibaja, S. M. Blackburn, M. R. Haghighat, and K. S. McKinley. De-
ferred gratification: Engineering for high performance garbage collec-
tion from the get go. In ACM SIGPLAN Workshop on Memory Sys-
tems Performance and Correctness, pages 58–65, San Jose, CA, USA,
2011. doi: 10.1145/1988915.1988930.

[15] R. E. Jones, A. Hosking, and J. E. B. Moss. The Garbage Collection
Handbook: The Art of Automatic Memory Management. Chapman
and Hall/CRC Applied Algorithms and Data Structures Series, USA,
2011.

[16] Y. Levanoni and E. Petrank. An on-the-fly reference counting garbage
collector for Java. In ACM Conference on Object–Oriented Program-
ming Systems, Languages, and Applications, pages 367–380, Tampa,
FL, USA, 2001. doi: 10.1145/504282.504309.

[17] Y. Levanoni and E. Petrank. An on-the-fly reference-counting garbage
collector for Java. ACM Transactions on Programming Languages
and Systems, 28(1):1–69, January 2006. doi: 10.1145/1111596.
1111597.

[18] R. D. Lins. Cyclic reference counting with lazy mark-scan. Infor-
mation Processing Letters, 44(4):215–220, December 1992. doi: 10.
1016/0020-0190(92)90088-D.

[19] A. D. Martinez, R. Wachenchauzer, and R. D. Lins. Cyclic refer-
ence counting with local mark-scan. Information Processing Letters,
34(1):31–35, February 1990. doi: 10.1016/0020-0190(90)
90226-N.

[20] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine, part I. Communications of the ACM, 3(4):
184–195, April 1960. doi: 10.1145/367177.367199.

[21] H. Paz, E. Petrank, and S. M. Blackburn. Age-oriented concur-
rent garbage collection. In International Conference on Compiler
Construction, Edinburgh, Scotland, UK, 2005. doi: 10.1007/
978-3-540-31985-6_9.

[22] J. Weizenbaum. Recovery of reentrant list structures in Lisp. Com-
munications of the ACM, 12(7):370–372, July 1969. doi: 10.1145/
363156.363159.

83

http://dx.doi.org/10.1147/sj.391.0211
http://dx.doi.org/10.1007/3-540-45337-7_12
http://dx.doi.org/10.1007/3-540-45337-7_12
http://dx.doi.org/10.1145/378795.378819
http://dx.doi.org/10.1145/378795.378819
http://dx.doi.org/10.1145/949305.949336
http://dx.doi.org/10.1145/949305.949336
http://dx.doi.org/10.1145/1379022.1375586
http://dx.doi.org/10.1145/1379022.1375586
http://dx.doi.org/10.1109/ICSE.2004.1317436
http://dx.doi.org/10.1109/ICSE.2004.1317436
http://dx.doi.org/10.1145/1005686.1005693
http://dx.doi.org/10.1145/1005686.1005693
http://dx.doi.org/10.1145/1167473.1167488
http://dx.doi.org/10.1002/spe.4380140602
http://dx.doi.org/10.1002/spe.4380140602
http://dx.doi.org/10.1145/367487.367501
http://dx.doi.org/10.1145/367487.367501
http://dx.doi.org/10.1145/96709.96735
http://dx.doi.org/10.1145/360336.360345
http://cs.anu.edu.au/~Daniel.Frampton/DanielFrampton_Thesis_Jun2010.pdf
http://cs.anu.edu.au/~Daniel.Frampton/DanielFrampton_Thesis_Jun2010.pdf
http://dx.doi.org/10.1145/1988915.1988930
http://dx.doi.org/10.1145/504282.504309
http://dx.doi.org/10.1145/1111596.1111597
http://dx.doi.org/10.1145/1111596.1111597
http://dx.doi.org/10.1016/0020-0190(92)90088-D
http://dx.doi.org/10.1016/0020-0190(92)90088-D
http://dx.doi.org/10.1016/0020-0190(90)90226-N
http://dx.doi.org/10.1016/0020-0190(90)90226-N
http://dx.doi.org/10.1145/367177.367199
http://dx.doi.org/10.1007/978-3-540-31985-6_9
http://dx.doi.org/10.1007/978-3-540-31985-6_9
http://dx.doi.org/10.1145/363156.363159
http://dx.doi.org/10.1145/363156.363159

	Introduction
	Background and Design Space
	Storing the Count
	Maintaining the Count
	Collecting Cyclic Objects

	Analysis of Reference Counting Intrinsics
	Methodology
	Distribution of Maximum Reference Counts
	Limited Reference Count Bits and Overflow
	Sources of Reference Counting Operations
	Efficacy of Coalescing
	Cyclic Garbage

	Improving Reference Counting
	Storing the Reference Count
	Lazy Treatment of New Objects
	Bringing It All Together

	Back In The Ring
	Conclusion

