A
\/

Lists and Sequences

4

=

S-S

/4

6/13/2010 7:53 PM Sequences

Outline and Reading

N

@ Singly linked list

@ Position ADT and List ADT (85.2.1)
@ Doubly linked list (8§ 5.2.3)

@ Sequence ADT (85.3.1)

|mplementations of the sequence ADT
(85.3.3)

@ [terators (85.5)

6/13/2010 7:53 PM Sequences

N

Singly Linked List

@ A singly linked list is a

T

concrete data structure { next
consisting of a sequence i 1] ° "
of nodes |

|
@ Each node stores | !

= element L elem node

= link to the next node 0 HEE IV VNS N S E
® C > ® C > ® C > ® C
A B C D

6/13/2010 7:53 PM Sequences

~—_—— e ————— ———

v

Stack with a Singly Linked List

N

We can implement a stack with a singly linked list
® The top element is stored at the first node of the list

The space used is O(n) and each operation of the
Stack ADT takes O(1) time

6/13/2010 7:53 PM Sequences 4

Queue with a Singly Linked List

N

@ \We can implement a queue with a singly linked list
s [he front element is stored at the first node
m The rear element iIs stored at the last node

@ The space used is O(n) and each operation of the
Queue ADT takes O(1) time

6/13/2010 7:53 PM Sequences 5

Position ADT

The Position ADT models the notion of place
within a data structure where a single object
IS stored

A special null position refers to no object.
Positions provide a unified view of diverse
ways of storing data, such as
= a cell of an array
= a node of a linked list

® Member functions:

m Object& element(): returns the element stored at
this position
m bool isNull(): returns true if this is a null position

N

6/13/2010 7:53 PM Sequences

List ADT

N

sequence of positions
storing arbitrary objects

@ |t establishes a
before/after relation
between positions

Generic methods:
m size(), ISEmpty()

Query methods:
m isFirst(p), isLast(p)

6/13/2010 7:53 PM Sequences

@ The List ADT models a Accessor methods:

first(), last()
before(p), after(p)

Update methods:

replaceElement(p, o),
swapElements(p, q)

insertBefore(p, o),
insertAfter(p, o),

InsertFirst(o),
InsertLast(o)

remove(p)

N

s element
= link to the previous node
= link to the next node

Doubly Linked List

€ A doubly linked list provides a natural
Implementation of the List ADT

€ Nodes implement Position and store:

Special trailer and header nodes

—_——— e —— — — — — — — — — — — — — —

N~ e e e e e o e e o —— — — — — — — — — —

6/13/2010 7:53 PM

Sequences

I
I
I
I
I
I
/

elements

-

Insertion

N

€ We visualize operation insertAfter(p, X), which returns position g

P
20 12 K N 2 P e S 2 T N
A \
N EN”
\A
NN
\A

6/13/2010 7:53 PM Sequences 9

Deletion

p
>
€ We visualize remove(p), where p = last() U O O)
SN ESANE S AN S AN E N
\A \g e \p
2N N A P s
\ A \ B
NG AN S
\ A \ B

6/13/2010 7:53 PM Sequences 10

Performance

N

® |n the implementation of the List ADT
by means of a doubly linked list
= The space used by a list with n elements Is
O(n)
= The space used by each position of the list
1S O(1)

= All the operations of the List ADT run In
O(1) time

= Operation element() of the
Position ADT runs in O(1) time

6/13/2010 7:53 PM Sequences 11

N

Sequence ADT

@ The Sequence ADT is the # List-based methods:

u_nion of the Vector and = first(), last(),

List ADTs before(p), after(p),
@ Elements accessed by replaceElement(p, 0),

. Rank. or swapElements(p, q),

. Position insertBefore(p, o),

insertAfter(p, o),

@ Generic methods: insertFirst(o)

= size(), ISEmpty() insertLast(0),
Vector-based methods: remove(p)
: elerlnAtF;ilgk(riZ&) # Bridge methods:
replaceAtRank(r, o),
InsertAtRank(r, o), = atRank(r), rankOf(p)
removeAtRank(r)

6/13/2010 7:53 PM Sequences 12

Applications of Sequences

N

€ The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered
collection of elements

® Direct applications:
= Generic replacement for stack, queue, vector, or
list
= small database (e.g., address book)
€ Indirect applications:
= Building block of more complex data structures

6/13/2010 7:53 PM Sequences 13

N

Array-based Implementation

@ We use a
circular array
storing
positions

A position

object stores:

s Element
s Rank

@ Indices f and |
keep track of
first and last
positions

6/13/2010 7:53 PM

(—

%
elements |

I
I
l

o~ s - aaaar - faadass - aat?.

ositions)

LI o

Sequences

14

Sequence Implementations

/R

L/

Operation

Array

List

size, ISEmpty

1

atRank, rankOf, elemAtRank

first, last, before, after

replaceElement, swapElements

replaceAtRank

InsertAtRank, removeAtRank

InsertFirst, insertLast

InsertAfter, insertBefore

remove

S (S|P, |D|RPr|FR|IFR|F

ot T B R T B B S B e

6/13/2010 7:53 PM Sequences

15

|terators

p
\J
@ An iterator abstracts the € An iterator is typically
process of scanning through associated with an another
a collection of elements data structure
€ Methods of the Objectlterator € We can augment the Stack,
ADT: Queue, Vector, List and
= boolean hasNext() Sequence ADTs with method:
= object next() = Objectlterator elements()
= reset() € Two notions of iterator:
@ Extends the concept of = snapshot: freezes the
position by adding a traversal contents of the data
capability structure at a given time

= dynamic: follows changes to

€ May be implemented with an
the data structure

array or singly linked list

6/13/2010 7:53 PM Sequences 16

	Lists and Sequences
	Outline and Reading
	Singly Linked List
	Stack with a Singly Linked List
	Queue with a Singly Linked List
	Position ADT
	List ADT
	Doubly Linked List
	Insertion
	Deletion
	Performance
	Sequence ADT
	Applications of Sequences
	Array-based Implementation
	Sequence Implementations
	Iterators

