
6/13/2010 7:53 PM Sequences 1

Lists and Sequences



6/13/2010 7:53 PM Sequences 2

Outline and Reading

Singly linked list
Position ADT and List ADT (§5.2.1)
Doubly linked list (§ 5.2.3)
Sequence ADT (§5.3.1)
Implementations of the sequence ADT 
(§5.3.3)
Iterators (§5.5)



6/13/2010 7:53 PM Sequences 3

Singly Linked List
A singly linked list is a 
concrete data structure 
consisting of a sequence 
of nodes
Each node stores

element
link to the next node

next

elem node

A B C D

∅



6/13/2010 7:53 PM Sequences 4

Stack with a Singly Linked List
We can implement a stack with a singly linked list
The top element is stored at the first node of the list
The space used is O(n) and each operation of the 
Stack ADT takes O(1) time 

∅t

nodes

elements



6/13/2010 7:53 PM Sequences 5

Queue with a Singly Linked List
We can implement a queue with a singly linked list

The front element is stored at the first node
The rear element is stored at the last node

The space used is O(n) and each operation of the 
Queue ADT takes O(1) time

f

r

∅

nodes

elements



6/13/2010 7:53 PM Sequences 6

Position ADT
The Position ADT models the notion of place 
within a data structure where a single object 
is stored
A special null position refers to no object.
Positions provide a unified view of diverse 
ways of storing data, such as

a cell of an array
a node of a linked list

Member functions:
Object& element(): returns the element stored at 
this position
bool isNull(): returns true if this is a null position



6/13/2010 7:53 PM Sequences 7

List ADT

The List ADT models a 
sequence of positions 
storing arbitrary objects
It establishes a 
before/after relation 
between positions
Generic methods:

size(), isEmpty()

Query methods:
isFirst(p), isLast(p)

Accessor methods:
first(), last()
before(p), after(p)

Update methods:
replaceElement(p, o), 
swapElements(p, q) 
insertBefore(p, o), 
insertAfter(p, o),
insertFirst(o), 
insertLast(o)
remove(p)



6/13/2010 7:53 PM Sequences 8

Doubly Linked List
A doubly linked list provides a natural 
implementation of the List ADT
Nodes implement Position and store:

element
link to the previous node
link to the next node

Special trailer and header nodes

prev next

elem

trailerheader nodes/positions

elements

node



6/13/2010 7:53 PM Sequences 9

Insertion
We visualize operation insertAfter(p, X), which returns position q

A B X C

A B C

p

A B C

p

X

q

p q



6/13/2010 7:53 PM Sequences 10

Deletion
We visualize remove(p), where p = last()

A B C D

p

A B C

D

p

A B C



6/13/2010 7:53 PM Sequences 11

Performance
In the implementation of the List ADT 
by means of a doubly linked list

The space used by a list with n elements is 
O(n)
The space used by each position of the list 
is O(1)
All the operations of the List ADT run in 
O(1) time
Operation element() of the 
Position ADT runs in O(1) time



6/13/2010 7:53 PM Sequences 12

Sequence ADT
The Sequence ADT is the 
union of the Vector and 
List ADTs
Elements accessed by

Rank, or
Position

Generic methods:
size(), isEmpty()

Vector-based methods:
elemAtRank(r), 
replaceAtRank(r, o), 
insertAtRank(r, o), 
removeAtRank(r)

List-based methods:
first(), last(), 
before(p), after(p), 
replaceElement(p, o), 
swapElements(p, q), 
insertBefore(p, o), 
insertAfter(p, o), 
insertFirst(o), 
insertLast(o), 
remove(p)

Bridge methods:
atRank(r), rankOf(p)



6/13/2010 7:53 PM Sequences 13

Applications of Sequences
The Sequence ADT is a basic, general-
purpose, data structure for storing an ordered 
collection of elements
Direct applications:

Generic replacement for stack, queue, vector, or 
list
small database (e.g., address book)

Indirect applications:
Building block of more complex data structures



6/13/2010 7:53 PM Sequences 14

Array-based Implementation
We use a 
circular array 
storing 
positions 
A position 
object stores:

Element
Rank

Indices f and l
keep track of 
first and last 
positions

0 1 2 3
positions

elements

S

lf



6/13/2010 7:53 PM Sequences 15

Sequence Implementations
Operation Array List
size, isEmpty 1 1
atRank, rankOf, elemAtRank 1 n
first, last, before, after 1 1
replaceElement, swapElements 1 1
replaceAtRank 1 n
insertAtRank, removeAtRank n n
insertFirst, insertLast 1 1
insertAfter, insertBefore n 1
remove n 1



6/13/2010 7:53 PM Sequences 16

Iterators
An iterator abstracts the 
process of scanning through 
a collection of elements
Methods of the ObjectIterator 
ADT:

boolean hasNext()
object next()
reset()

Extends the concept of 
position by adding a traversal 
capability
May be implemented with an 
array or singly linked list

An iterator is typically 
associated with an another 
data structure
We can augment the Stack, 
Queue, Vector, List and 
Sequence ADTs with method:

ObjectIterator elements()

Two notions of iterator:
snapshot: freezes the 
contents of the data 
structure at a given time
dynamic: follows changes to 
the data structure


	Lists and Sequences
	Outline and Reading
	Singly Linked List
	Stack with a Singly Linked List
	Queue with a Singly Linked List
	Position ADT
	List ADT
	Doubly Linked List
	Insertion
	Deletion
	Performance
	Sequence ADT
	Applications of Sequences
	Array-based Implementation
	Sequence Implementations
	Iterators

