
Java

Modules

Module

• Introduced in Java 9

• Modules give a way to describe the relationships and
dependencies of the code of an application

• Modules let you control which parts of a module are
accessible to other modules and which are not

• Modules are most helpful to large applications

– To reduce the management complexity of large software

• Small programs also benefit from modules

– Java API library has now been organized into modules

2Prepared By - Rifat Shahriyar

Module

• It is now possible to specify which parts of the API
are required by your program and which are not

• This makes it possible to deploy programs with a
smaller runtime footprint

– Important when creating code for small devices, such as
those intended to be part of the Internet of Things (IoT)

• JDK and the run-time system substantially upgraded
to support modules

– Several keywords, enhancements to javac, java, and other
JDK tools, new tools and file formats

3Prepared By - Rifat Shahriyar

Module Basics

• Module is a grouping of packages and resources that
can be collectively referred to by the module’s name

• A module declaration specifies
– The name of a module

– Defines the relationship a module and its packages have to
other modules

• Module declarations are program statements in a
Java source file and are supported by several module
related keywords
– Context-sensitive restricted keywords are recognized as

keywords only in the context of a module declaration

4Prepared By - Rifat Shahriyar

Module Basics

• A module declaration is contained in a file called
module-info.java

– This file is then compiled by javac into a class file and is
known as its module descriptor

• module-info.java file must contain only a module
definition, cannot contain other types of declarations

• A module declaration begins with keyword module

module moduleName {

// module definition (maybe empty, typically not)

}

5Prepared By - Rifat Shahriyar

Modules Two Key Features

• The first is a module’s ability to specify that it
requires another module

– One module can specify that it depends on another

– This is accomplished by use of the requires keyword

• The second is a module’s ability to control which, if
any, of its packages are accessible by another module

– This is accomplished by use of the exports keyword

– The public and protected types within a package are
accessible to other modules only if they are explicitly
exported

6Prepared By - Rifat Shahriyar

Simple Module

Prepared By - Rifat Shahriyar 7

module-info.java of module A module-info.java of module B

Compile and Run the Module

Project: JavaModulesSimple (source code provided)

Go to moduleA\src and run:

javac -d C:\module\A module-info.java p1\Calculator.java

Go to moduleB\src and run:

javac --module-path C:\module\ -d C:\module\B

module-info.java p2\TestCalculator.java

From anywhere run:

java --module-path C:\module\ --module B/p2.TestCalculator

8Prepared By - Rifat Shahriyar

Closer Look at requires and exports

• requires moduleName

• Here, moduleName specifies the name of a module
that is required by the module

• The required module must be present in order for
the current module to compile

• When more than one module is required, it must be
specified in its own requires statement

• A module declaration may include several different
requires statements

9Prepared By - Rifat Shahriyar

Closer Look at requires and exports

• exports packageName

• Here, packageName specifies the name of the
package that is exported by the module in which this
statement occurs

• A module can export as many packages as needed,
with each one specified in a separate exports
statement

• A module may have several exports statements

10Prepared By - Rifat Shahriyar

Closer Look at requires and exports

• When a module exports a package, it makes all of the
public and protected types in the package accessible
to other modules

– Public and protected members of those types as well

• If a package within a module is not exported, it is
private to that module including all of its public types

• The exports statement makes packages accessible to
outside modules

– Any non-exported package is only for the internal use of its
module

11Prepared By - Rifat Shahriyar

Closer Look at requires and exports

• requires and exports work together

– If one module depends on another, then it must specify
that dependence with requires

– The module on which another depends must explicitly
export the packages that the dependent module needs

– If either side of this dependence relationship is missing,
the dependent module will not compile

• requires and exports statements must occur only
within a module statement

• A module statement must occur by itself in a file
called module-info.java

12Prepared By - Rifat Shahriyar

java.base and the Platform Modules

• Beginning with Java 9 the Java API packages have
been incorporated into modules

– API modules are referred to as platform modules, and their
names all begin with the prefix java

– java.base, java.desktop, java.xml

• By modularizing the API, it becomes possible to
deploy an application with only the packages that it
requires, rather than the entire Java Runtime
Environment (JRE)

– Very important improvement due to the size of the full JRE

13Prepared By - Rifat Shahriyar

java.base and the Platform Modules

• The most important platform module is java.base

– It includes and exports those packages fundamental to
Java, such as java.lang, java.io, and java.util, among many
others

– java.base is automatically accessible to all modules

– All other modules automatically require java.base

– There is no need to include a requires java.base statement
in a module declaration

– It is not wrong to explicitly specify java.base, it’s just not
necessary

– Similar to automatic import of java.lang

14Prepared By - Rifat Shahriyar

Legacy Code and Unnamed Module

• Unnamed module provides support for legacy code

– When you use code that is not part of a named module, it
automatically becomes part of the unnamed module

• Unnamed module has two important attributes

– all of the packages in the unnamed module are
automatically exported

– unnamed module can access any and all other modules

• When program does not use modules, all API
modules are automatically accessible through the
unnamed module

15Prepared By - Rifat Shahriyar

Exporting to a Specific Module

• In an exports statement, the to clause specifies a list
of one or more modules that have access to the
exported package

– only those modules named in the to clause will have
access

– the to clause creates what is known as a qualified export

exports packageName to moduleNames

• Here, moduleNames is a comma-separated list of
modules to which the exporting module grants
access

16Prepared By - Rifat Shahriyar

Using requires transitive

• Three modules, A, B, and C

– B requires A and C requires B

– C depends on B and B depends on A, C has an indirect
dependence on A

• As long as C does not directly use any of the contents of
A, the following is fine:

17Prepared By - Rifat Shahriyar

module C {
requires B;

}

module B {
exports p;
requires A;

}

p is package exported by B and used by C.

Using requires transitive

• A problem occurs if C does want to access a type in A

18Prepared By - Rifat Shahriyar

module C {
requires B;
requires A;

}

if B will be used by many modules,
you must add requires A to all
module definitions that require B
(tedious)

module B {
exports p;
requires transitive A;

}

You can create an implied
dependence on A, any module
that depends on B will also,
automatically, depend on A. Thus,
C would automatically have
access to A (better)

Solution 1

Solution 2

Module jar files and jlink

Project: JavaModules (source code provided)

Step-1: Compile the modules

javac -d C:\module\A module-info.java p1\Calculator.java (run
from moduleA\src)

javac --module-path C:\module\ -d C:\module\B module-
info.java p2\TestCalculator.java (run from moduleB\src)

javac --module-path C:\module\ -d C:\module\C module-
info.java p3\TestCalculator2.java (run from moduleC\src)

To execute run the following:

java --module-path C:\module\ --module C/p3.TestCalculator2

19Prepared By - Rifat Shahriyar

Module jar files and jlink

Step-2: Create module jar files

Go to C:\module and run:

mkdir libs

jar --create --file=libs\A.jar -C A .

jar --create --file=libs\B.jar -C B .

jar --create --file=libs\C.jar --main-class=p3.TestCalculator2 -C C .

To execute run the following:

java -p C:\module\libs --module C

Prepared By - Rifat Shahriyar 20

Module jar files and jlink

Step-3: Use jlink to create a custom Java runtime image

• jlink is a tool that generates a custom Java runtime image that
contains only the platform modules required for a given
application

• Such a runtime image acts exactly like the JRE but contains only
the modules we picked and the dependencies they need to
function

jlink --module-path "%JAVA_HOME%"\jmods;C:\module\libs --
add-modules C --output C:\myapp

To execute go to C:\myapp\bin and run the following:

java --module C/p3.TestCalculator2

Prepared By - Rifat Shahriyar 21

Final Thoughts on Modules

• Modules are both a recent and significant addition to
Java, it is likely that the module system will evolve
over time

• Although their use is not required at this time, they
offer important benefits for commercial applications
that no Java programmer can afford to ignore

• It is likely that module-based development will be in
every Java programmer’s future

Prepared By - Rifat Shahriyar 22

