Java

Generics & Collections



Generics



Generics

* Many algorithms are logically the same no matter
what type of data they are being applied to (Stack of
Integer, String or Thread)

* Generics (introduced by JDK 5) allows to create
classes, interfaces, and methods that will work in a
type-safe manner with various kinds of data

* Generics allows to define an algorithm once,

independently of any specific type of data

— The expressive power generics added to the language
fundamentally changed the way that Java code is written



Generics

* The term generics means parameterized types

* |t enables to create classes, interfaces, and methods
in which the type of data upon which they operate is
specified as a parameter

e Using generics, it is possible to create a single class,
for example, that automatically works with different
types of data



Generics

* Java has always given you the ability to create
generalized classes, interfaces, and methods by
operating through references of type Object

* |n pre-generics code, generalized classes, interfaces,
and methods used Object references to operate on
various types of objects

 The problem is that they could not do so with type
safety



Generics

* Generics added the type safety that was lacking

* They also streamlined the process

— it is no longer necessary to explicitly employ casts to
translate between Object and the type of data that is
actually being operated upon

* With generics, all casts are automatic and implicit



Generic Class

public class MyGenerics<T>

Here, T is the name of a type parameter. This name is
used as a placeholder for the actual type that will be
passed to MyGenerics when an object is created

MyGenerics<integer> myGenerics = new MyGenerics<>()

MyGenerics uses a type parameter, MyGenerics is a
generic class

Type parameters can be bounded
Example: MyGenerics(1-3).java



Generics Only with Reference Types

 When declaring an instance of a generic type, the
type argument passed to the type parameter must
be a reference type

* You cannot use a primitive type, such as int or char

* The following declaration is illegal:
MyGenerics<int> intOb = new MyGenerics<int>();
// Error, can't use primitive type



Generic Method

Methods inside a generic class can make use of a
class’ type parameter

However, it is possible to declare a generic method
that uses one or more type parameters of its own

Furthermore, it is possible to create a generic
method that is enclosed within a non-generic class

It is possible for constructors to be generic, even if
their class is not
Example: MyGenerics4.java



Generic Interface

In addition to generic classes and methods, you can
also have generic interfaces

Generic interfaces are specified like generic classes

The generic interface offers two benefits
— It can be implemented for different types of data

— It allows to put constraints (that is, bounds) on the types of
data for which the interface can be implemented

Example: MyGenerics5.java



Wildcard and Bounded Wildcard

The wildcard argument is specified by the ?, and it
represents an unknown type

— MyClass<?> matches any MyClass object
Wildcard arguments can be bounded in much the
same way that a type parameter can be bounded

— A bounded wildcard is important when you are creating a
generic type that will operate on a class hierarchy

Example: MyGenerics(6-7).java



Collections



Collections

The java.util package contains one of the Java’s most
powerful framework - Collections

Collections is significantly affected by generics

This framework defines several classes, such as lists
and maps, that manage massive number of objects

The collection classes have always been able to work
with any type of object

With generics the collection classes can now be used
with complete type safety



Collection Interface

* |tis the foundation upon which the Collection
framework is built (interface Collection<E>)

* |t must be implemented by any class that defines a
collection

e Some functions

boolean add(E obj) boolean addAll(Collection c)
void clear() boolean contains(Object obj)
boolean isEmpty() int size()

boolean remove(Object obj) boolean removeAll(Collection c)



List Interface

* interface List<E>

e Some functions

void add(int index, E obj)

boolean addAll(int index, Collection c)
E get(int index)

int indexOf(Object obj)

int lastIndexOf(Object obj)

E remove(int index)



Deque Interface

 interface Deque<E>

e Some functions

void addFirst(E obj)
E getFirst()

E peekFirst()

E pollFirst()

E pop()

E removeFirst()

void addLast(E obj)
E getLast()

E peekLast()

E pollLast()

void push(E obj)

E removelast()



ArraylList

It extends the AbstractlList class and implements the
List Interface.

It is a variable length array of object references that
can dynamically increase or decrease in size
(dynamic array)

ArrayLlist is better for storing and accessing data

ArrayLlist is non-synchronized
Example: ArrayListDemo(1-3).java



LinkedList

It extends the AbstractSequentiallist class and
implements the List, Deque and Queue Interface

It provides a linked-list data structure

LinkedList internally uses a doubly linked list to store
the elements

LinkedList is better for manipulating data

LinkedList is non-synchronized
Example: LinkedListDemo.java



Arrays

The Arrays class provides various methods that are
useful when working with arrays

Some methods such as binarySearch, copyOf,
copyOfRange, fill, sort are there

Example: ArraysDemo.java



Vector

It extends the AbstractlList class and implements the
List Interface

It implements a dynamic array same as ArrayList
Vector is synchronized

ArrayList increments 50% of the current array size if
the number of elements exceeds its capacity

Vector increments 100% essentially doubling the
current array size

Example: VectorDemo.java



HashTable

It stores key-value pairs
Neither keys nor values can be null

When using HashTable, you specify an object that is
used as a key and the value you want linked to that

key

The key is then hashed and the resulting hash code is
used as the index at which the value is stored within
the table

Example: HashTableDemo.java



HashMap

* |t also stores key-value pairs like HashTable
* Differences:

Synchronized No Yes

Thread-Safe No Yes

Keys and values One null key, any null values Not permit null keys and values
Performance Fast Slow in comparison
Superclass AbstractMap Dictionary

e Use ConcurrentHashMap for multi-threading
 Example: HashMapDemo.java



Custom Comparator

Required to sort a collection/array of custom objects
Must implement the Comparable interface

Must implement the following method

public int compareTo(Object o) {

}

Example: ComparatorDemo.java



